Example of Computation of Fourier series of a CT SIGNAL

A practice problem on "Signals and Systems"


Equations

Fourier series of x(t):
$ x(t)=\sum_{k=-\infty}^{\infty}a_ke^{jk\omega_0t} $

Signal Coefficients:
$ a_k=\frac{1}{T}\int_0^Tx(t)e^{-jk\omega_0t}dt $

From Phil Cannon

Input Signal

$ x(t)=cos(3*pi*t)cos(6*pi*t)\! $

$ x(t)=[1/2*e^{j*2*pi*t}+1/2*e^{-j*2*pi*t}]*[1/2*e^{j*4*pi*t}+1/2*e^{-j*4*pi*t}] $
$ =1/4*e^{j6pit}+1/4*e^{-j2pit}+1/4*e^{j2pit}+1/4*e^{-j6pit} $

The fundamental frequency is 2*pi
a3=1/4 a-1=1/4 a1=1/4 a3=1/4 all other ak=0


Back to Practice Problems on Signals and Systems

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett