Revision as of 09:15, 13 April 2010 by Mboutin (Talk | contribs)


Course Outline, ECE662 Spring 2010 Prof. Mimi

Note: This is an approximate outline that is subject to change throughout the semester.


Lecture Topic
1 1. Introduction
1 2. What is pattern Recognition
2,3 3. Finite vs Infinite feature spaces
4,5 4. Bayes Rule
6-10

5. Discriminant functions

  • Definition;
  • Application to normally distributed features;
  • Error analysis.
11-13

6. Parametric Density Estimation

  • Maximum likelihood estimation
  • Bayesian parameter estimation
13-19

7. Non-parametric Density Estimation

  • Parzen Windows
  • K-nearest neighbors
  • The nearest neighbor classification rule.
19,20,21, 22 8. Linear Discriminants
22, 23 ,24,25

9. Non-Linear Discriminant functions

  • Support Vector Machines 
  • Artificial Neural Networks
26,27,28,29,30 10. Clustering and decision trees



Back to 2010 Spring ECE 662 mboutin

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett