Revision as of 06:54, 9 March 2010 by Mboutin (Talk | contribs)


Course Outline, ECE662 Spring 2010 Prof. Mimi

Note: This is an approximate outline that is subject to change throughout the semester.


Lecture Topic
1 1. Introduction
1 2. What is pattern Recognition
2-3 3. Finite vs Infinite feature spaces
4-5 4. Bayes Rule
6-10

5. Discriminate functions

- Definition;

- Application to normally distributed features;

- Error analysis.

11-12

6. Parametric Density Estimation

-Maximum likelihood estimation

-Bayesian parameter estimation

7. Non-parametric Density Estimation

-Parzen Windows

-K-nearest neighbors

-The nearest neighbor classification rule.

8. Linear Discriminants
9. SVM
10. ANN
11. Decision Trees
12. Clustering



Back to 2010 Spring ECE 662 mboutin

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood