Revision as of 13:24, 4 April 2008 by Svenkata (Talk)

The Geometric Series formulas below still hold for |alpha|'s containing complex exponentials.


For k from 0 to n, where |alpha| does not equal 1:

$ \sum_{k=0}^{n} \alpha^k = \frac{1-\alpha^{n+1}}{1-\alpha} $

    (else, = n + 1)


For k from 0 to infinity, where |alpha| is less than 1: $ \sum_{k=0}^\infty \alpha^k = \frac{1}{1-\alpha} $


    (else it diverges)


Example: We want to evaluate the following: $ \sum_{k=0}^\infty (\frac{1}{2})^k e^{-j \omega k}= \sum_{k=0}^\infty (\frac{1}{2}e^{-j\omega})^k = \frac{1}{1-\frac{1}{2}e^{-j\omega}} $


     In this case $ \alpha=\frac{1}{2}e^{-j\omega} $ 

in the above Geometric Series formula.

Homework Problem 5.31_Old Kiwi

Alumni Liaison

Have a piece of advice for Purdue students? Share it through Rhea!

Alumni Liaison