The Geometric Series formulas below still hold for $ \alpha $'s containing complex exponentials.


For k from 0 to n, where $ \alpha $ does not equal 1:

$ \sum_{k=0}^{n} \alpha^k = \frac{1-\alpha^{n+1}}{1-\alpha} $

    (else, = n + 1)


For k from 0 to infinity, where $ alpha $ is less than 1: $ \sum_{k=0}^\infty \alpha^k = \frac{1}{1-\alpha} $


    (else it diverges)


Example: We want to evaluate the following: $ \sum_{k=0}^\infty (\frac{1}{2})^k e^{-j \omega k}= \sum_{k=0}^\infty (\frac{1}{2}e^{-j\omega})^k = \frac{1}{1-\frac{1}{2}e^{-j\omega}} $


     In this case $ \alpha=\frac{1}{2}e^{-j\omega} $ 

in the above Geometric Series formula.

Homework Problem 5.31_Old Kiwi

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang