Contents
Z Transform
Discrete analog of Laplace Transform
$ X(z) = \sum_{n = -\infty}^\infty x[n]z^{-n} $
Where z is a complex variable.
Relationship between Z-Transform and F.T.
$ X(\omega) = X(e^{j\omega}) $
$ X(z)=X(re^{j\omega}) $ Then $ X(z) = F(x[n]r^{-n}) $ $ X(z) = \sum_{n = -\infty}^\infty x[n]z^{-n} = \sum_{n = -\infty}^\infty x[n](re^{j\omega})^{-n} = \sum_{n = -\infty}^\infty x[n]r^{-n}e^{-j\omega n} $ Where $ \sum_{n = -\infty}^\infty x[n]r^{-n}e^{-j\omega n} $ is the F.T!
Properties of the ROC
Refer to Xujun Huang: Properties of ROC_ECE301Fall2008mboutin
Computing the Inverse Z.T.
$ X(z) = \frac{1}{1-2z^{-1}} , |z| < 2 $
Warning $ |2z^{-1}| = \frac{2}{z} > 1 $!!
$ = \frac{1}{1-\frac{2}{z}} = \frac{z}{z-2} = \frac{z}{-2(1-\frac{z}{2})} $
$ = -\frac{z}{2}\frac{1}{1-\frac{z}{2}} = \frac{-z}{2} \sum_{n = 0}^\infty (\frac{z}{2})^n $
$ \sum_{n = 0}^\infty \frac{-z}{2} \frac{1}{2^n} z^n = \sum_{n = 0}^\infty \frac{-z^{n+1}}{2^{n+1}}</math let <math>-k = n + 1 $
$ \sum_{n = \infty}^{-1} -2^kz^{-k} $
$ x[n] = -2^nu[-n-1] $