Property of ROC


Property 1

The ROC of the Z Transformation consists of a ring in the Z-plane centered about the origin.


Property 2

The ROC of the Z Transformation does not contain any poles

Deduction: If a specific value $ Z_0 $ is on ROC, all values of Z on the same circle $ (|Z|=|Z_0|) $ are part of ROC.


Property 3

If x[n] is of "Finite duration", then the ROC is the entire Z-plane, exclude possibly Z=0 and/or z=$ \infty $.


Property 4

If x[n] is "right-sided", and a circle $ (|Z|=r_0) $ is part of ROC, then all finite value $ |Z|>r_0 $ is also part of ROC.


Property 5

If x[n] is "left-sided", and a circle $ (|Z|=r_0) $ is part of ROC, then all value $ 0<|Z|<r_0 $ is also part of ROC.


Property 6

If x(t) is "two sided", and a circle $ (|Z|=r_0) $ is part of ROC, then the ROC contains a ring which includes the circle $ (|Z|=r_0) $.


Property 7

If X(Z) is rational, i.e. $ X(Z)=\frac {P(Z)}{Q(Z)} $ where P(s),Q(s) are polynomial,

Then the ROC is bounded by the poles (i.e. values that make Q(Z)=0) or extendes to infinity.


Property 8

If X(Z) is rational, i.e. $ X(Z)=\frac {P(Z)}{Q(Z)} $ where P(s),Q(s) are polynomial, and x[n] is right-sided

Then the ROC is the area out of the circle containing the outmost pole (i.e. values that make Q(Z)=0 with maximun absolute value).


Property 9

If X(Z) is rational, i.e. $ X(Z)=\frac {P(Z)}{Q(Z)} $ where P(s),Q(s) are polynomial, and x[n] is left-sided

Then the ROC is the area inside the circle containing the innermost non-zero pole (i.e. values that make Q(Z)=0 with minimum absolute value).

Alumni Liaison

BSEE 2004, current Ph.D. student researching signal and image processing.

Landis Huffman