Revision as of 08:50, 26 September 2008 by Cocker (Talk)

Equations

Fourier series of x(t):
$ x(t)=\sum_{k=-\infty}^{\infty}a_ke^{jk\omega_0t} $

Signal Coefficients:
$ a_k=\frac{1}{T}\int_0^Tx(t)e^{-jk\omega_0t}dt $

From Phil Cannon

Input Signal

$ x(t)=cos(3*pi*t)cos(6*pi*t)\! $

Ao

$ Ao =\int_0^{2\pi}[(1+j)cos(4t) + 14sin(6t)]e^{0}dt $

A1

$ Ao =\int_0^{2\pi}[(1+j)cos(4t) + 14sin(6t)]e^{1}dt $

A2

$ Ao =\int_0^{2\pi}[(1+j)cos(4t) + 14sin(6t)]e^{2}dt $

A-1

$ Ao =\int_0^{2\pi}[(1+j)cos(4t) + 14sin(6t)]e^{-1}dt $

A-2

$ Ao =\int_0^{2\pi}[(1+j)cos(4t) + 14sin(6t)]e^{-2}dt $

Alumni Liaison

Meet a recent graduate heading to Sweden for a Postdoctorate.

Christine Berkesch