Line 43: Line 43:
 
(e) Plot the magnitude of the DTFT of <math>y_1[n]</math>, <math>Y_1(\omega)</math>, over <math>-\pi<\omega<\pi</math>. Show all work.<br>
 
(e) Plot the magnitude of the DTFT of <math>y_1[n]</math>, <math>Y_1(\omega)</math>, over <math>-\pi<\omega<\pi</math>. Show all work.<br>
 
(f) Plot the magnitude of the DTFT of the final output <math>y[n][n]</math>, <math>Y(\omega)</math>, over <math>-\pi<\omega<\pi</math>. Show all work.<br>
 
(f) Plot the magnitude of the DTFT of the final output <math>y[n][n]</math>, <math>Y(\omega)</math>, over <math>-\pi<\omega<\pi</math>. Show all work.<br>
:'''Click [[ECE_PhD_QE_CNSIP_2015_Problem1.1|here]] to view student [[ECE_PhD_QE_CNSIP_2015_Problem1.1|answers and discussions]]'''
+
:'''Click [[2011CS-2-1|here]] to view student [[2011CS-2-1|answers and discussions]]'''
 
----
 
----
  
Line 57: Line 57:
 
<math>z[n]=x[n]+jy[n]</math><br>
 
<math>z[n]=x[n]+jy[n]</math><br>
 
(f) Plot <math>r_{zz}[l]</math>
 
(f) Plot <math>r_{zz}[l]</math>
:'''Click [[ECE_PhD_QE_CNSIP_2015_Problem1.1|here]] to view student [[ECE_PhD_QE_CNSIP_2015_Problem1.1|answers and discussions]]'''
+
:'''Click [[2011CS-2-2|here]] to view student [[2011CS-2-2|answers and discussions]]'''
 
----
 
----
  
  
 
[[ECE_PhD_Qualifying_Exams|Back to ECE QE page]]
 
[[ECE_PhD_Qualifying_Exams|Back to ECE QE page]]

Latest revision as of 14:34, 19 February 2019


ECE Ph.D. Qualifying Exam

Communicates & Signal Process (CS)

Question 2: Signal Processing

August 2011




Problem 1. [60 pts]
In the system below, the two analysis filters, $ h_0[n] $ and $ h_1[n] $, and the two synthesis filters, $ f_0[n] $ and $ f_1[n] $,form a Quadrature Mirror Filter (QMF). Specially,
$ h_0[n]=\dfrac{2\beta cos[(1+\beta)\pi(n+5)/2]}{\pi[1-4\beta^2(n+5)^2]}+\dfrac{sin[(1-\beta)\pi(n+0.5)/2]}{\pi[(n+.5)-4\beta^2(n+.5)^3]},-\infty<n<\infty $ with $ \beta=0.5 $
$ h_1[n]=(-1)^n h_0[n] $ $ f_0[n]=h_0[n] $ $ f_1[n]=-h_1[n] $
The DTFT of the halfband filter $ h_0[n] $ above may be expressed as follows:
$ H_0(\omega)= \begin{cases} e^{j\dfrac{\omega}{2}} |\omega|<\dfrac{\pi}{4},\\ e^{j\dfrac{\omega}{2}} cos[(|\omega|-\dfrac{\pi}{4})], \dfrac{\pi}{4}<|\omega|<\dfrac{3\pi}{4} \\ 0 \dfrac{3\pi}{4}<|\omega|<\pi \end{cases} $
Wan82_ECE538_problem1.PNG Consider the following input signal
$ x[n]=16\dfrac{sin(\dfrac{3\pi}{8}n)}{\pi n}\dfrac{sin(\dfrac{\pi}{8}n)}{\pi n}cos(\dfrac{\pi}{2}n) $
HINT: The solution to problem is greatly simplified if you exploit the fact that the DTFT of the input signal $ x[n] $ is such that $ X(\omega)=X(\omega-\pi) $.
(a) Plot the magnitude of the DTFT of $ x[n] $, $ X(\omega) $, over $ -\pi<\omega<\pi $. Show all work.
(b) Plot the magnitude of the DTFT of $ x_0[n] $, $ X_0(\omega) $, over $ -\pi<\omega<\pi $. Show all work.
(c) Plot the magnitude of the DTFT of $ x_1[n] $, $ X_1(\omega) $, over $ -\pi<\omega<\pi $. Show all work.
(d) Plot the magnitude of the DTFT of $ y_0[n] $, $ Y_0(\omega) $, over $ -\pi<\omega<\pi $. Show all work.
(e) Plot the magnitude of the DTFT of $ y_1[n] $, $ Y_1(\omega) $, over $ -\pi<\omega<\pi $. Show all work.
(f) Plot the magnitude of the DTFT of the final output $ y[n][n] $, $ Y(\omega) $, over $ -\pi<\omega<\pi $. Show all work.

Click here to view student answers and discussions

Problem 2. [40 pts]
(a) Let $ x[n] $ and $ y[n] $ be real-valued sequences both of which are even-symmetric: $ x[n]=x[-n] $ and $ y[n]=y[-n] $. Under these conditions, prove that $ r_{xy}[l]=r_{yx}[l] $ for all $ l $.
(b) Express the autocorrelation sequence r_{zz}[l] for the complex-valued signal $ z[n]=x[n]+jy[n] $ where $ x[n] $ and $ y[n] $ are real-valued sequences, in terms of $ r_{xx}[l] $, $ r_{xy}[l] $, $ r_yx[l] $ and $ r_{yy}[l] $.
(c) Determine a closed-form expression for the autocorrelation sequence $ r_{xx}[l] $ for the signal $ x[n] $ below.
$ x[n]=({\dfrac{sin(\dfrac{\pi}{4}n)}{\pi n}})({1+(-1)^n}) $
(d) Determine a closed-form expression for the autocorrelation sequence $ r_yy[l] $ for the signal $ y[n] $ below
$ y[n]=(\dfrac{sin(\dfrac{\pi}{4})n}{\pi n})cos(\dfrac{\pi}{2}n) $
(e) Determine a closed-form expression for the autocorrelation sequence $ r_{zz}[l] $ for the complex-valued signal $ z[n] $ formed with $ x[n] $ and $ y[n] $ defined above as the real and imaginary parts, respectively, as defined below. You must show all work and simplify as much as possible.
$ z[n]=x[n]+jy[n] $
(f) Plot $ r_{zz}[l] $

Click here to view student answers and discussions


Back to ECE QE page

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett