Communication Signal (CS)
Question 2: Signal Processing
August 2011 Problem 2
Solution
a)
Because $ x[-n]=x[n] $ $ y[-n]=y[n] $
$ r_{xy}[l]=X[l]\ast Y^{\ast}[-l]=X[-l]\ast Y^{\ast}[l]=Y[l]\ast X^{\ast}[-l]=r_{yx}[l] $
b)
$ z[n]=x[n]+jy[n] $
$ r_{zz}[l]=(x[l]+jy[l])*(x[-l]+jy[-l])^*=x[l]*x^*[-l]+jy[l]*x^*[-l]-jx[l]*y^*[-l]+y[l]*y^*[-l]=r_{xx}[l]+r_{yy}[l] $
c)
$ x[n]=\dfrac{sin(\dfrac{\pi}{4}n)}{\pi n}(1+(-1)^n)=\dfrac{sin(\dfrac{\pi}{4}n)}{\pi n}(1+e^{j\pi n}) $
$ \Rightarrow r_{xx}[l]=\dfrac{sin(\dfrac{\pi}{4}n)}{\pi n}(1+e^{j\pi n})=\dfrac{sin(\dfrac{\pi}{4}n)}{\pi n}2cos^2\dfrac{\pi}{2}l $
d)
$ Y[n]=\dfrac{sin(\dfrac{\pi}{4}n)}{\pi n}cos(\dfrac{\pi}{2}n) \Rightarrow r_{yy}[l]=\dfrac{sin(\dfrac{\pi}{4})}{\pi l}cos(\dfrac{\pi}{2}l) $
e)
$ r_{zz}[l]=r_{xx}[l]+r_{yy}[l]=\dfrac{sin(\dfrac{\pi}{4}n)}{\pi n}2cos^2\dfrac{\pi}{2}l+\dfrac{sin(\dfrac{\pi}{4})}{\pi l}cos(\dfrac{\pi}{2}l) $
f)
Similar Problem
2017 QE CS2 Prob3
2016 QE CS2 Prob1
2015 QE CS2 Prob3