(Created page with "Category:ECE438Fall2014Boutin Category:ECE438 Category:ECE Category:fourier transform Category:homework =Homework 5 Solution, ECE438,...") |
|||
Line 6: | Line 6: | ||
=[[HW5ECE38F15|Homework 5]] Solution, [[ECE438]], [[2015_Fall_ECE_438_Boutin|Fall 2015]], [[user:mboutin|Prof. Boutin]]= | =[[HW5ECE38F15|Homework 5]] Solution, [[ECE438]], [[2015_Fall_ECE_438_Boutin|Fall 2015]], [[user:mboutin|Prof. Boutin]]= | ||
+ | |||
+ | ==Question 1== | ||
+ | '''Downsampling and upsampling''' | ||
+ | |||
+ | a) What is the relationship between the DT Fourier transform of x[n] and that of y[n]=x[4n]? (Give the mathematical relation and sketch an example.) | ||
+ | |||
+ | '''Solution''' | ||
+ | |||
+ | <math> | ||
+ | \mathcal{Y}(\omega) =\frac{1}{4} \sum_{k=0}^{3} \mathcal{X} \left (\frac{\omega-k2\pi}{4} \right ) | ||
+ | </math> | ||
+ | |||
+ | b) What is the relationship between the DT Fourier transform of x[n] and that of | ||
+ | |||
+ | <math>z[n]=\left\{ \begin{array}{ll} | ||
+ | x[n/4],& \text{ if } n \text{ is a multiple of } 4,\\ | ||
+ | 0, & \text{ else}. | ||
+ | \end{array}\right.</math> | ||
+ | |||
+ | (Give the mathematical relation and sketch an example.) | ||
+ | |||
+ | '''Solution''' | ||
+ | |||
+ | <math> | ||
+ | \mathcal{Z}(\omega) = \mathcal{X}(4\omega) | ||
+ | </math> | ||
+ | ---- | ||
+ | ==Question 2== | ||
+ | '''Downsampling and upsampling''' | ||
+ | |||
+ | Let <math>x_1[n]=x(Tn)</math> be a sampling of a CT signal <math>x(t)</math>. Let D be a positive integer. | ||
+ | |||
+ | a) Under what circumstances is the downsampling <math>x_D [n]= x_1 [Dn]</math> equivalent to a resampling of the signal with a new period equal to DT (i.e. <math>x_D [n]= x(DT n)</math>)? | ||
+ | |||
+ | b) Under what circumstances is it possible to construct the sampling <math>x_3[n]= x(\frac{T}{D} n) </math> directly from <math>x_1[n]</math> (without reconstructing x(t))? | ||
+ | ---- | ||
+ | ==Question 3== | ||
+ | Define System 1 as the following LTI system | ||
+ | |||
+ | <math> x(t)\rightarrow | ||
+ | \left[ \begin{array}{c} | ||
+ | \text{ LPF} \\ | ||
+ | \text{ no gain} \\ | ||
+ | \text{cutoff at 1000Hz} | ||
+ | \end{array}\right] | ||
+ | \rightarrow | ||
+ | \left[ \begin{array}{ccc} & & \\ | ||
+ | & H(f) & \\ | ||
+ | & & \end{array}\right] | ||
+ | \rightarrow y(t) | ||
+ | </math> | ||
+ | |||
+ | where the frequency response H(f) corresponds to a band-pass filter with no gain and cutoff frequencies f1=200Hz and f2=600Hz. | ||
+ | |||
+ | a) Sketch the graph of the frequency response H(f) of System 1. | ||
+ | |||
+ | b) Sketch the graph of the frequency response <math>H_1(\omega)</math> that would make the following system equivalent to System 1. | ||
+ | |||
+ | <math> x(t) | ||
+ | \rightarrow | ||
+ | \left[ \begin{array}{c} | ||
+ | \text{LPF} \\ | ||
+ | \text{ no gain }\\ | ||
+ | \text{ cutoff at 1000Hz} | ||
+ | \end{array}\right] | ||
+ | \rightarrow | ||
+ | \left[ \begin{array}{c} | ||
+ | \text{C/D Converter} \\ | ||
+ | \text{6000 samples per second} | ||
+ | \end{array}\right] | ||
+ | \rightarrow | ||
+ | \left[ \begin{array}{c} | ||
+ | H_1(\omega) | ||
+ | \end{array}\right] | ||
+ | \rightarrow | ||
+ | \left[ \begin{array}{c} | ||
+ | \text{D/C Converter} \\ | ||
+ | \text{6000 samples per second} | ||
+ | \end{array}\right] | ||
+ | \rightarrow y(t) | ||
+ | </math> | ||
+ | ---- | ||
+ | ==Question 4== | ||
+ | Define System 2 as the following LTI system | ||
+ | |||
+ | <math> x[n]\rightarrow | ||
+ | \left[ \begin{array}{ccc} & & \\ | ||
+ | & H_1(\omega) & \\ | ||
+ | & & \end{array}\right] | ||
+ | \rightarrow y[n] | ||
+ | </math> | ||
+ | |||
+ | where the frequency response <math>H_1(\omega)</math> is the one you obtained in Question 3. Is it possible to implement System 2 as follows? Answer yes/no. If you answered yes, sketch the graph of the required LPF1 and frequency response H2. If you answered no, explain why not. (Hint: the first two parts of the system correspond to an "interpolator".) | ||
+ | |||
+ | <math> x[n] \rightarrow | ||
+ | \left[ \begin{array}{ccc} & & \\ | ||
+ | & \text{Upsample by factor 2} & \\ | ||
+ | & & \end{array}\right] | ||
+ | \rightarrow | ||
+ | \left[ \begin{array}{ccc} & & \\ | ||
+ | & \text{LPF1 } & \\ | ||
+ | & & \end{array}\right] | ||
+ | \rightarrow | ||
+ | \left[ \begin{array}{ccc} & & \\ | ||
+ | & H_2(\omega) & \\ | ||
+ | & & \end{array}\right] | ||
+ | \rightarrow | ||
+ | \left[ \begin{array}{ccc} & & \\ | ||
+ | & \text{Downsample by factor 2} & \\ | ||
+ | & & \end{array}\right] | ||
+ | \rightarrow | ||
+ | y([n] | ||
+ | </math> | ||
+ | |||
+ | ---- | ||
+ | ==Question 5== | ||
+ | Define System 3 as the following LTI system | ||
+ | |||
+ | <math> x[n] | ||
+ | \rightarrow | ||
+ | \left[ \begin{array}{c} | ||
+ | \text{LPF} \\ | ||
+ | \text{ no gain }\\ | ||
+ | \text{ cutoff at} \frac{\pi}{2} | ||
+ | \end{array}\right] | ||
+ | \rightarrow | ||
+ | \left[ \begin{array}{ccc} & & \\ | ||
+ | & H_1(\omega) & \\ | ||
+ | & & \end{array}\right] | ||
+ | \rightarrow y[n] | ||
+ | </math> | ||
+ | |||
+ | where the frequency response <math>H_1(\omega)</math> is the one you obtained in Question 3. | ||
+ | |||
+ | a) Is it possible to implement System 3 as follows? Answer yes/no. If you answered yes, sketch the graph of the required LPF2 and frequency response H3. If you answered no, explain why not. (Hint: the last two parts of the system correspond to an "interpolator".) | ||
+ | |||
+ | <math> x[n] \rightarrow | ||
+ | \left[ \begin{array}{c} | ||
+ | \text{LPF} \\ | ||
+ | \text{ no gain }\\ | ||
+ | \text{ cutoff at} \frac{\pi}{2} | ||
+ | \end{array}\right] | ||
+ | \rightarrow | ||
+ | \left[ \begin{array}{ccc} & & \\ | ||
+ | & \text{Downsample by factor 2} & \\ | ||
+ | & & \end{array}\right] | ||
+ | \rightarrow | ||
+ | \left[ \begin{array}{ccc} & & \\ | ||
+ | & H_3(\omega) & \\ | ||
+ | & & \end{array}\right] | ||
+ | \rightarrow | ||
+ | \left[ \begin{array}{ccc} & & \\ | ||
+ | & \text{Upsample by factor 2} & \\ | ||
+ | & & \end{array}\right] | ||
+ | \rightarrow | ||
+ | \left[ \begin{array}{c} | ||
+ | \text{LPF2} | ||
+ | \end{array}\right] | ||
+ | \rightarrow | ||
+ | y([n] | ||
+ | </math> |
Revision as of 22:05, 16 October 2015
Contents
Homework 5 Solution, ECE438, Fall 2015, Prof. Boutin
Question 1
Downsampling and upsampling
a) What is the relationship between the DT Fourier transform of x[n] and that of y[n]=x[4n]? (Give the mathematical relation and sketch an example.)
Solution
$ \mathcal{Y}(\omega) =\frac{1}{4} \sum_{k=0}^{3} \mathcal{X} \left (\frac{\omega-k2\pi}{4} \right ) $
b) What is the relationship between the DT Fourier transform of x[n] and that of
$ z[n]=\left\{ \begin{array}{ll} x[n/4],& \text{ if } n \text{ is a multiple of } 4,\\ 0, & \text{ else}. \end{array}\right. $
(Give the mathematical relation and sketch an example.)
Solution
$ \mathcal{Z}(\omega) = \mathcal{X}(4\omega) $
Question 2
Downsampling and upsampling
Let $ x_1[n]=x(Tn) $ be a sampling of a CT signal $ x(t) $. Let D be a positive integer.
a) Under what circumstances is the downsampling $ x_D [n]= x_1 [Dn] $ equivalent to a resampling of the signal with a new period equal to DT (i.e. $ x_D [n]= x(DT n) $)?
b) Under what circumstances is it possible to construct the sampling $ x_3[n]= x(\frac{T}{D} n) $ directly from $ x_1[n] $ (without reconstructing x(t))?
Question 3
Define System 1 as the following LTI system
$ x(t)\rightarrow \left[ \begin{array}{c} \text{ LPF} \\ \text{ no gain} \\ \text{cutoff at 1000Hz} \end{array}\right] \rightarrow \left[ \begin{array}{ccc} & & \\ & H(f) & \\ & & \end{array}\right] \rightarrow y(t) $
where the frequency response H(f) corresponds to a band-pass filter with no gain and cutoff frequencies f1=200Hz and f2=600Hz.
a) Sketch the graph of the frequency response H(f) of System 1.
b) Sketch the graph of the frequency response $ H_1(\omega) $ that would make the following system equivalent to System 1.
$ x(t) \rightarrow \left[ \begin{array}{c} \text{LPF} \\ \text{ no gain }\\ \text{ cutoff at 1000Hz} \end{array}\right] \rightarrow \left[ \begin{array}{c} \text{C/D Converter} \\ \text{6000 samples per second} \end{array}\right] \rightarrow \left[ \begin{array}{c} H_1(\omega) \end{array}\right] \rightarrow \left[ \begin{array}{c} \text{D/C Converter} \\ \text{6000 samples per second} \end{array}\right] \rightarrow y(t) $
Question 4
Define System 2 as the following LTI system
$ x[n]\rightarrow \left[ \begin{array}{ccc} & & \\ & H_1(\omega) & \\ & & \end{array}\right] \rightarrow y[n] $
where the frequency response $ H_1(\omega) $ is the one you obtained in Question 3. Is it possible to implement System 2 as follows? Answer yes/no. If you answered yes, sketch the graph of the required LPF1 and frequency response H2. If you answered no, explain why not. (Hint: the first two parts of the system correspond to an "interpolator".)
$ x[n] \rightarrow \left[ \begin{array}{ccc} & & \\ & \text{Upsample by factor 2} & \\ & & \end{array}\right] \rightarrow \left[ \begin{array}{ccc} & & \\ & \text{LPF1 } & \\ & & \end{array}\right] \rightarrow \left[ \begin{array}{ccc} & & \\ & H_2(\omega) & \\ & & \end{array}\right] \rightarrow \left[ \begin{array}{ccc} & & \\ & \text{Downsample by factor 2} & \\ & & \end{array}\right] \rightarrow y([n] $
Question 5
Define System 3 as the following LTI system
$ x[n] \rightarrow \left[ \begin{array}{c} \text{LPF} \\ \text{ no gain }\\ \text{ cutoff at} \frac{\pi}{2} \end{array}\right] \rightarrow \left[ \begin{array}{ccc} & & \\ & H_1(\omega) & \\ & & \end{array}\right] \rightarrow y[n] $
where the frequency response $ H_1(\omega) $ is the one you obtained in Question 3.
a) Is it possible to implement System 3 as follows? Answer yes/no. If you answered yes, sketch the graph of the required LPF2 and frequency response H3. If you answered no, explain why not. (Hint: the last two parts of the system correspond to an "interpolator".)
$ x[n] \rightarrow \left[ \begin{array}{c} \text{LPF} \\ \text{ no gain }\\ \text{ cutoff at} \frac{\pi}{2} \end{array}\right] \rightarrow \left[ \begin{array}{ccc} & & \\ & \text{Downsample by factor 2} & \\ & & \end{array}\right] \rightarrow \left[ \begin{array}{ccc} & & \\ & H_3(\omega) & \\ & & \end{array}\right] \rightarrow \left[ \begin{array}{ccc} & & \\ & \text{Upsample by factor 2} & \\ & & \end{array}\right] \rightarrow \left[ \begin{array}{c} \text{LPF2} \end{array}\right] \rightarrow y([n] $