Line 71: Line 71:
  
 
Note that we can integrate over any one period of the function. Performing this integration gives
 
Note that we can integrate over any one period of the function. Performing this integration gives
 +
 
<math>
 
<math>
 
\begin{align}
 
\begin{align}

Revision as of 12:57, 21 September 2015


Homework 1 Solution, ECE438, Fall 2015, Prof. Boutin

Note: Please pay attention to the difference between $ X \ $ and $ {\mathcal X} $.


A complex exponential

$ x(t)=e^{j2 \pi 800 t} $

From table, $ {\mathcal X} (\omega)= 2\pi \delta(\omega - \omega_0) $, therefore
$ \begin{align} X(f) & = {\mathcal X} (2 \pi f)\\ &= 2\pi \delta(2\pi f - 2\pi 800) \\ &=\delta(f - 800), \end{align} $
where the last line follows from the scaling property of the Dirac delta distribution.


A sine

$ x(t)=\sin (2\pi 600 t) $

From table, $ {\mathcal X} (\omega)= \frac{\pi}{i} \left[\delta (\omega - \omega_0) - \delta (\omega + \omega_0)\right] $, therefore
$ \begin{align} X(f) & = {\mathcal X} (2 \pi f)\\ &= \frac{2 \pi}{2j} \delta (2\pi f - 2\pi 600) - \frac{2 \pi}{2 j} \delta(2\pi f + 2 \pi 600) \\ &=\frac{1}{2j}\delta(f-600) - \frac{1}{2j}\delta(f+600) , \end{align} $
where the last line follows from the scaling property of the Dirac delta distribution.


A cosine

$ x(t)=\cos (2\pi t) $

From table, $ {\mathcal X} (\omega)= \pi \left[\delta (\omega - \omega_0) + \delta (\omega + \omega_0)\right] $, therefore
$ \begin{align} X(f) & = {\mathcal X} (2 \pi f)\\ &= \frac{2 \pi}{2 } \delta (2\pi f - 2\pi 1) + \frac{2 \pi}{2 } \delta(2\pi f + 2 \pi 1) \\ &=\frac{1}{2}\delta(f-1) + \frac{1}{2}\delta(f+1) , \end{align} $
where the last line follows from the scaling property of the Dirac delta distribution.



A periodic function

From the table, we have the transform pair of a periodic function as
$ \sum_{k=-\infty}^{\infty} a_k e^{j\omega_0t} \leftrightarrow 2\pi \sum_{k=-\infty}^{\infty} a_k \delta(\omega-k\omega_0) $
where $ a_k $ are the Fourier Series coefficients of the function.

We can represent this in terms of $ f $ using the definition $ \omega=2\pi f $:
$ \begin{align} \sum_{k=-\infty}^{\infty} a_k e^{j2\pi f_0t} \leftrightarrow &2\pi \sum_{k=-\infty}^{\infty} a_k \delta(2\pi f-k2\pi f_0) \\ &=\sum_{k=-\infty}^{\infty} a_k \delta(f-k f_0) \mbox{, by the scaling property of the delta} \end{align} $

To find Fourier series coefficients coefficients, we use the formula

$ a_k=\frac{1}{T_0}\int_{\tau}^{\tau+T_0} x(t)e^{-j\omega_0 kt}dt $

Note that we can integrate over any one period of the function. Performing this integration gives

$ \begin{align} a_k&=\frac{1}{T_0}\int_{\tau}^{\tau+T_0} x(t)e^{-j\omega_0 kt}dt \\ &=\frac{1}{4}\int_{-2}^{2} x(t)e^{-j \frac{\pi kt}{2}}dt \\ &=\frac{1}{4}\int_{-1}^{1} e^{-j \frac{\pi kt}{2}}dt \\ &=\frac{1}{4}\frac{-2}{j\pi k} \left [e^{-j\frac{\pi kt}{2}} \right ]_{-1}^1 \\ &= \frac{-1}{j2\pi k} \left [e^{-j\frac{\pi k}{2}} - e^{j\frac{\pi k}{2}}\right ] \\ &= \frac{\sin \left ( \frac{\pi}{2} k \right )}{\pi k} \end{align} $

Then we have that

$ X(f)= \sum_{k=-\infty}^{\infty} \frac{\sin \left ( \frac{\pi }{2}k \right )}{\pi k} \delta \left (f-\frac{k}{4} \right ) $


An impulse train

$ x(t)=\sum_{n=-\infty}^{\infty} \delta (t-5n) $
From the table, we have the transform pair:
$ \sum_{n=-\infty}^{\infty} \delta (t-nT) \leftrightarrow \frac{2 \pi}{T} \sum_{k=-\infty}^{\infty} \delta \left ( \omega - \frac{2\pi k}{T} \right ) $
Therefore, using the definition that $ \omega=2\pi f $:
$ \begin{align} \sum_{n=-\infty}^{\infty} \delta (t-5n) \leftrightarrow &\frac{2 \pi}{T} \sum_{k=-\infty}^{\infty} \delta \left ( 2\pi f- \frac{2\pi 5}{T} \right ) \\ &=\frac{1}{T} \sum_{k=-\infty}^{\infty} \delta \left (f- \frac{5}{T} \right ) \mbox{, using the scaling property of the delta} \end{align} $


Discussion

You may discuss the homework below.

  • write comment/question here
    • answer will go here

Back to ECE438, Fall 2014, Prof. Boutin

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn