(New page: Category:ECE438Fall2014Boutin Category:ECE438 Category:ECE Category:fourier transform Category:homework =Homework 5 Solution, ECE438, Fall 2014= ==Questions 1== C...) |
|||
Line 33: | Line 33: | ||
b) <math>x_1[n]= e^{j \frac{2}{3} \pi n}</math> | b) <math>x_1[n]= e^{j \frac{2}{3} \pi n}</math> | ||
+ | '''Solution''' | ||
+ | Notice that the period is 3, so we will calculate the 3-point DFT. Beginning with the inverse-DFT: | ||
+ | |||
+ | <math> | ||
+ | \begin{align} | ||
+ | x[n]&=\frac{1}{3} \sum_{k=0}^{2} X_3[k] e^{j2\pi kn/3} \\ | ||
+ | &= \frac{1}{3} \left ( X_3[0]e^{j2\pi k0/3} + X_3[1]e^{j2\pi k1/3} + X_3[2]e^{j2\pi k2/3} \right ) \\ | ||
+ | &= e^{j2\pi n/3} | ||
+ | \end{align} | ||
+ | </math> | ||
+ | |||
+ | From this we can see that | ||
+ | |||
+ | <math> | ||
+ | X_3[1]=3 \mbox{, and } X_3[0]=X_3[2]=0 | ||
+ | </math> | ||
+ | |||
+ | or | ||
+ | |||
+ | <math> | ||
+ | X_3[k]=\begin{cases} 3\mbox{, }k=1\\ 0\mbox{, else} \end{cases} \mbox{ , periodic with period} = 3 | ||
+ | </math> | ||
c) <math>x_5[n]= e^{-j \frac{2}{1000} \pi n}</math> | c) <math>x_5[n]= e^{-j \frac{2}{1000} \pi n}</math> |
Revision as of 09:25, 7 October 2014
Contents
Homework 5 Solution, ECE438, Fall 2014
Questions 1
Compute the DFT of the following signals x[n] (if possible). How does your answer relate to the Fourier series coefficients of x[n]?
a) $ x_1[n] = \left\{ \begin{array}{ll} 1, & n \text{ multiple of } N\\ 0, & \text{ else}. \end{array} \right. $
Solution
The period of the input is N, so we will calculate the N-point DFT:
$ \begin{align} X_n[k]&=\sum_{n=0}^{N-1} x[n] e^{-j2\pi kn /N} \\ &= 1e^{-j2\pi k 0 /N} + 0e^{-j2\pi k1 /N} + \ldots + 0e^{-j2\pi k(N-1) /N} \\ &= 1 \text{ for all } k \end{align} $
b) $ x_1[n]= e^{j \frac{2}{3} \pi n} $
Solution
Notice that the period is 3, so we will calculate the 3-point DFT. Beginning with the inverse-DFT:
$ \begin{align} x[n]&=\frac{1}{3} \sum_{k=0}^{2} X_3[k] e^{j2\pi kn/3} \\ &= \frac{1}{3} \left ( X_3[0]e^{j2\pi k0/3} + X_3[1]e^{j2\pi k1/3} + X_3[2]e^{j2\pi k2/3} \right ) \\ &= e^{j2\pi n/3} \end{align} $
From this we can see that
$ X_3[1]=3 \mbox{, and } X_3[0]=X_3[2]=0 $
or
$ X_3[k]=\begin{cases} 3\mbox{, }k=1\\ 0\mbox{, else} \end{cases} \mbox{ , periodic with period} = 3 $
c) $ x_5[n]= e^{-j \frac{2}{1000} \pi n} $
d) $ x_2[n]= e^{j \frac{2}{\sqrt{3}} \pi n} $
e) $ x_6[n]= \cos\left( \frac{2}{1000} \pi n\right) ; $
f) $ x_2[n]= e^{j \frac{\pi}{3} n } \cos ( \frac{\pi}{6} n ) $
g) $ x_8[n]= (-j)^n . $
h) $ x_3[n] =(\frac{1}{\sqrt{2}}+j \frac{1}{\sqrt{2}})^n $
Note: All of these DFTs are VERY simple to compute. If your computation looks like a monster, look for a simpler approach!
Question 2
Compute the inverse DFT of $ X[k]= e^{j \pi k }+e^{-j \frac{\pi}{2} k} $.
Note: Again, this is a VERY simple problem. Have pity for your grader, and try to use a simple approach!
Question 3
Prove the time shifting property of the DFT.
Discussion
You may discuss the homework below.
- write comment/question here
- answer will go here