Line 48: | Line 48: | ||
---- | ---- | ||
===A periodic function=== | ===A periodic function=== | ||
− | <math>x(t)= | + | <math>x(t)=\sum_{k=-\infty}^{\infty} a_k e^{jk2\pi f_0 t}</math> <br> |
+ | From the [https://www.projectrhea.org/rhea/index.php/CTFourierTransformPairsCollectedfromECE301withomega table], we have the transform pair:<br> | ||
+ | <math>\sum_{k=-\infty}^{\infty} a_k e^{j\omega_0t} \leftrightarrow 2\pi \sum_{k=-\infty}^{\infty} a_k \delta(\omega-k\omega_0)</math> <br> | ||
+ | Therefore, using the definition that <math>\omega=2\pi f</math>:<br> | ||
+ | <math> | ||
+ | \begin{align} | ||
+ | \sum_{k=-\infty}^{\infty} a_k e^{j2\pi f_0t} \leftrightarrow &2\pi \sum_{k=-\infty}^{\infty} a_k \delta(2\pi f-k2\pi f_0) \\ | ||
+ | &=\sum_{k=-\infty}^{\infty} a_k \delta(f-k f_0) \mbox{, by the scaling property of the delta} | ||
+ | \end{align} | ||
+ | </math> <br> | ||
+ | |||
---- | ---- | ||
===An impulse train=== | ===An impulse train=== | ||
− | <math>x(t)=\sum_{n=-\infty}^{\infty} \delta (t-nT)</math> | + | <math>x(t)=\sum_{n=-\infty}^{\infty} \delta (t-nT)</math><br> |
+ | From the [https://www.projectrhea.org/rhea/index.php/CTFourierTransformPairsCollectedfromECE301withomega table], we have the transform pair:<br> | ||
+ | <math>\sum_{n=-\infty}^{\infty} \delta (t-nT) \leftrightarrow \frac{2 \pi}{T} \sum_{k=-\infty}^{\infty} \delta \left ( \omega - \frac{2\pi k}{T} \right )</math> <br> | ||
+ | Therefore, using the definition that <math>\omega=2\pi f</math>:<br> | ||
+ | <math> | ||
+ | \begin{align} | ||
+ | \sum_{n=-\infty}^{\infty} \delta (t-nT) \leftrightarrow &\frac{2 \pi}{T} \sum_{k=-\infty}^{\infty} \delta \left ( 2\pi f- \frac{2\pi k}{T} \right ) \\ | ||
+ | &=\frac{1}{T} \sum_{k=-\infty}^{\infty} \delta \left (f- \frac{k}{T} \right ) \mbox{, using the scaling property of the delta} | ||
+ | \end{align} | ||
+ | </math> | ||
---- | ---- | ||
Revision as of 17:00, 8 September 2014
Contents
Homework 1 Solution, ECE438, Fall 2014, Prof. Boutin
A complex exponential
$ x(t)=e^{j2 \pi f_0 t} $
From table, $ e^{j\omega_0t} \leftrightarrow 2\pi \delta(\omega - \omega_0) $, therefore
$ \begin{align} e^{j2\pi f_0 t } \leftrightarrow &2\pi \delta(2\pi f - 2\pi f_0) \\ &=\delta(f - f_0) \end{align} $
Where the last line follows from the scaling property of the delta function.
A sine
$ \begin{align} x(t)=sin(2\pi f_0 t) =\frac{1}{2j} e^{j2\pi f_0 t} - \frac{1}{2j} e^{-j2\pi f_0 t} \end{align} $
$ \begin{align} \mathcal{F} \left \{ sin (2 \pi f_0 t) \right \} &= \mathcal{F} \left \{ \frac{1}{2j} e^{j2\pi f_0 t} - \frac{1}{2j} e^{-j2\pi f_0 t} \right \} \\ &= \frac{2 \pi}{2j} \delta (2\pi f - 2\pi f_0) - \frac{2 \pi}{2 j} \delta(2\pi f + 2 \pi f_0) \mbox{, using the transform of the complex exponential} \\ &= \frac{1}{2j}\delta(f-f_0) - \frac{1}{2j}\delta(f+f_0) \mbox{, by the scaling property of the delta} \end{align} $
A cosine
$ x(t)=cos(2\pi f_0 t) = \frac{1}{2}e^{j2\pi f_0t} + \frac{1}{2}e^{-j2\pi f_0 t} $
$ \begin{align} \mathcal{F} \left \{ cos (2 \pi f_0 t) \right \} &= \mathcal{F} \left \{ \frac{1}{2} e^{j2\pi f_0 t} + \frac{1}{2} e^{-j2\pi f_0 t} \right \} \\ &= \frac{2 \pi}{2} \delta (2\pi f - 2\pi f_0) + \frac{2 \pi}{2 } \delta(2\pi f + 2 \pi f_0) \mbox{, using the transform of the complex exponential} \\ &= \frac{1}{2}\delta(f-f_0) + \frac{1}{2}\delta(f+f_0) \mbox{, by the scaling property of the delta} \end{align} $
A periodic function
$ x(t)=\sum_{k=-\infty}^{\infty} a_k e^{jk2\pi f_0 t} $
From the table, we have the transform pair:
$ \sum_{k=-\infty}^{\infty} a_k e^{j\omega_0t} \leftrightarrow 2\pi \sum_{k=-\infty}^{\infty} a_k \delta(\omega-k\omega_0) $
Therefore, using the definition that $ \omega=2\pi f $:
$ \begin{align} \sum_{k=-\infty}^{\infty} a_k e^{j2\pi f_0t} \leftrightarrow &2\pi \sum_{k=-\infty}^{\infty} a_k \delta(2\pi f-k2\pi f_0) \\ &=\sum_{k=-\infty}^{\infty} a_k \delta(f-k f_0) \mbox{, by the scaling property of the delta} \end{align} $
An impulse train
$ x(t)=\sum_{n=-\infty}^{\infty} \delta (t-nT) $
From the table, we have the transform pair:
$ \sum_{n=-\infty}^{\infty} \delta (t-nT) \leftrightarrow \frac{2 \pi}{T} \sum_{k=-\infty}^{\infty} \delta \left ( \omega - \frac{2\pi k}{T} \right ) $
Therefore, using the definition that $ \omega=2\pi f $:
$ \begin{align} \sum_{n=-\infty}^{\infty} \delta (t-nT) \leftrightarrow &\frac{2 \pi}{T} \sum_{k=-\infty}^{\infty} \delta \left ( 2\pi f- \frac{2\pi k}{T} \right ) \\ &=\frac{1}{T} \sum_{k=-\infty}^{\infty} \delta \left (f- \frac{k}{T} \right ) \mbox{, using the scaling property of the delta} \end{align} $
Discussion
You may discuss the homework below.
- write comment/question here
- answer will go here