Line 48: Line 48:
 
----
 
----
 
===A periodic function===
 
===A periodic function===
<math>x(t)=x(t-T)</math>
+
<math>x(t)=\sum_{k=-\infty}^{\infty} a_k e^{jk2\pi f_0 t}</math> <br>
 +
From the [https://www.projectrhea.org/rhea/index.php/CTFourierTransformPairsCollectedfromECE301withomega  table], we have the transform pair:<br>
 +
<math>\sum_{k=-\infty}^{\infty} a_k e^{j\omega_0t} \leftrightarrow 2\pi \sum_{k=-\infty}^{\infty} a_k \delta(\omega-k\omega_0)</math> <br>
 +
Therefore, using the definition that <math>\omega=2\pi f</math>:<br>
 +
<math>
 +
\begin{align}
 +
\sum_{k=-\infty}^{\infty} a_k e^{j2\pi f_0t} \leftrightarrow &2\pi \sum_{k=-\infty}^{\infty} a_k \delta(2\pi f-k2\pi f_0) \\
 +
&=\sum_{k=-\infty}^{\infty} a_k \delta(f-k f_0) \mbox{, by the scaling property of the delta}
 +
\end{align}
 +
</math> <br>
 +
 
 
----
 
----
 
===An impulse train===
 
===An impulse train===
<math>x(t)=\sum_{n=-\infty}^{\infty} \delta (t-nT)</math>
+
<math>x(t)=\sum_{n=-\infty}^{\infty} \delta (t-nT)</math><br>
 +
From the [https://www.projectrhea.org/rhea/index.php/CTFourierTransformPairsCollectedfromECE301withomega  table], we have the transform pair:<br>
 +
<math>\sum_{n=-\infty}^{\infty} \delta (t-nT) \leftrightarrow \frac{2 \pi}{T} \sum_{k=-\infty}^{\infty} \delta \left ( \omega - \frac{2\pi k}{T} \right )</math> <br>
 +
Therefore, using the definition that <math>\omega=2\pi f</math>:<br>
 +
<math>
 +
\begin{align}
 +
\sum_{n=-\infty}^{\infty} \delta (t-nT) \leftrightarrow &\frac{2 \pi}{T} \sum_{k=-\infty}^{\infty} \delta \left ( 2\pi f- \frac{2\pi k}{T} \right ) \\
 +
&=\frac{1}{T} \sum_{k=-\infty}^{\infty} \delta \left (f- \frac{k}{T} \right ) \mbox{, using the scaling property of the delta}
 +
\end{align}
 +
</math>
 
----
 
----
  

Revision as of 17:00, 8 September 2014


Homework 1 Solution, ECE438, Fall 2014, Prof. Boutin


A complex exponential

$ x(t)=e^{j2 \pi f_0 t} $

From table, $ e^{j\omega_0t} \leftrightarrow 2\pi \delta(\omega - \omega_0) $, therefore
$ \begin{align} e^{j2\pi f_0 t } \leftrightarrow &2\pi \delta(2\pi f - 2\pi f_0) \\ &=\delta(f - f_0) \end{align} $
Where the last line follows from the scaling property of the delta function.


A sine

$ \begin{align} x(t)=sin(2\pi f_0 t) =\frac{1}{2j} e^{j2\pi f_0 t} - \frac{1}{2j} e^{-j2\pi f_0 t} \end{align} $

$ \begin{align} \mathcal{F} \left \{ sin (2 \pi f_0 t) \right \} &= \mathcal{F} \left \{ \frac{1}{2j} e^{j2\pi f_0 t} - \frac{1}{2j} e^{-j2\pi f_0 t} \right \} \\ &= \frac{2 \pi}{2j} \delta (2\pi f - 2\pi f_0) - \frac{2 \pi}{2 j} \delta(2\pi f + 2 \pi f_0) \mbox{, using the transform of the complex exponential} \\ &= \frac{1}{2j}\delta(f-f_0) - \frac{1}{2j}\delta(f+f_0) \mbox{, by the scaling property of the delta} \end{align} $


A cosine

$ x(t)=cos(2\pi f_0 t) = \frac{1}{2}e^{j2\pi f_0t} + \frac{1}{2}e^{-j2\pi f_0 t} $

$ \begin{align} \mathcal{F} \left \{ cos (2 \pi f_0 t) \right \} &= \mathcal{F} \left \{ \frac{1}{2} e^{j2\pi f_0 t} + \frac{1}{2} e^{-j2\pi f_0 t} \right \} \\ &= \frac{2 \pi}{2} \delta (2\pi f - 2\pi f_0) + \frac{2 \pi}{2 } \delta(2\pi f + 2 \pi f_0) \mbox{, using the transform of the complex exponential} \\ &= \frac{1}{2}\delta(f-f_0) + \frac{1}{2}\delta(f+f_0) \mbox{, by the scaling property of the delta} \end{align} $


A periodic function

$ x(t)=\sum_{k=-\infty}^{\infty} a_k e^{jk2\pi f_0 t} $
From the table, we have the transform pair:
$ \sum_{k=-\infty}^{\infty} a_k e^{j\omega_0t} \leftrightarrow 2\pi \sum_{k=-\infty}^{\infty} a_k \delta(\omega-k\omega_0) $
Therefore, using the definition that $ \omega=2\pi f $:
$ \begin{align} \sum_{k=-\infty}^{\infty} a_k e^{j2\pi f_0t} \leftrightarrow &2\pi \sum_{k=-\infty}^{\infty} a_k \delta(2\pi f-k2\pi f_0) \\ &=\sum_{k=-\infty}^{\infty} a_k \delta(f-k f_0) \mbox{, by the scaling property of the delta} \end{align} $


An impulse train

$ x(t)=\sum_{n=-\infty}^{\infty} \delta (t-nT) $
From the table, we have the transform pair:
$ \sum_{n=-\infty}^{\infty} \delta (t-nT) \leftrightarrow \frac{2 \pi}{T} \sum_{k=-\infty}^{\infty} \delta \left ( \omega - \frac{2\pi k}{T} \right ) $
Therefore, using the definition that $ \omega=2\pi f $:
$ \begin{align} \sum_{n=-\infty}^{\infty} \delta (t-nT) \leftrightarrow &\frac{2 \pi}{T} \sum_{k=-\infty}^{\infty} \delta \left ( 2\pi f- \frac{2\pi k}{T} \right ) \\ &=\frac{1}{T} \sum_{k=-\infty}^{\infty} \delta \left (f- \frac{k}{T} \right ) \mbox{, using the scaling property of the delta} \end{align} $


Discussion

You may discuss the homework below.

  • write comment/question here
    • answer will go here

Back to ECE438, Fall 2014, Prof. Boutin

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal