Line 20: Line 20:
 
**Type all equations using latex code between <nowiki> <math> </math> </nowiki> tags.
 
**Type all equations using latex code between <nowiki> <math> </math> </nowiki> tags.
 
**You may include links to other [https://www.projectrhea.org/learning/about_Rhea.php Project Rhea] pages.  
 
**You may include links to other [https://www.projectrhea.org/learning/about_Rhea.php Project Rhea] pages.  
 +
 +
 +
Euclidean distance: <br> <math>D(\vec{x_1},\vec{x_2})=||\vec{x_1}-\vec{x_2}||_{L_2}=\sqrt{\sum_{i=1}^n ({x_1}^i-{x_2}^i)^2}</math>
 +
 +
Manhattan (cab driver) distance: <br><math>D(\vec{x_1},\vec{x_2})=||\vec{x_1}-\vec{x_2}||_{L_1}=\sum_{i=1}^n |{x_1}^i-{x_2}^i|</math>
 +
 +
Minkowski metric: <br><math>D(\vec{x_1},\vec{x_2})=||\vec{x_1}-\vec{x_2}||_{L_p}=(\sum_{i=1}^n ({x_1}^i-{x_2}^i)^p)^{\frac{1}{p}}</math>
 +
 +
Riemannian metric: <br><math>D(\vec{x_1},\vec{x_2})=\sqrt{(\vec{x_1}-\vec{x_2})^\top \mathbb{M}(\vec{x_1}-\vec{x_2})}</math>
 +
 +
Infinite norm: <br><math>D(\vec{x_1},\vec{x_2})=||\vec{x_1}-\vec{x_2}||_{\infty}=max_i |{x_1}^i-{x_2}^i|</math>
  
  

Revision as of 19:00, 30 April 2014


From KNN to Nearest Neighbor Classification

A slecture by ECE student Jonathan Manring

Partly based on the ECE662 Spring 2014 lecture material of Prof. Mireille Boutin.



Post your slecture material here. Guidelines:

  • If you are making a text slecture
    • Type text using wikitext markup languages
    • Type all equations using latex code between <math> </math> tags.
    • You may include links to other Project Rhea pages.


Euclidean distance:
$ D(\vec{x_1},\vec{x_2})=||\vec{x_1}-\vec{x_2}||_{L_2}=\sqrt{\sum_{i=1}^n ({x_1}^i-{x_2}^i)^2} $

Manhattan (cab driver) distance:
$ D(\vec{x_1},\vec{x_2})=||\vec{x_1}-\vec{x_2}||_{L_1}=\sum_{i=1}^n |{x_1}^i-{x_2}^i| $

Minkowski metric:
$ D(\vec{x_1},\vec{x_2})=||\vec{x_1}-\vec{x_2}||_{L_p}=(\sum_{i=1}^n ({x_1}^i-{x_2}^i)^p)^{\frac{1}{p}} $

Riemannian metric:
$ D(\vec{x_1},\vec{x_2})=\sqrt{(\vec{x_1}-\vec{x_2})^\top \mathbb{M}(\vec{x_1}-\vec{x_2})} $

Infinite norm:
$ D(\vec{x_1},\vec{x_2})=||\vec{x_1}-\vec{x_2}||_{\infty}=max_i |{x_1}^i-{x_2}^i| $





(create a question page and put a link below)

Questions and comments

If you have any questions, comments, etc. please post them on this page.


Back to ECE662, Spring 2014

Alumni Liaison

EISL lab graduate

Mu Qiao