Line 3: | Line 3: | ||
:[[QE2012_AC-3_ECE580-1|Part 1]],[[QE2012_AC-3_ECE580-2|2]],[[QE2012_AC-3_ECE580-3|3]],[[QE2012_AC-3_ECE580-4|4]],[[QE2012_AC-3_ECE580-5|5]] | :[[QE2012_AC-3_ECE580-1|Part 1]],[[QE2012_AC-3_ECE580-2|2]],[[QE2012_AC-3_ECE580-3|3]],[[QE2012_AC-3_ECE580-4|4]],[[QE2012_AC-3_ECE580-5|5]] | ||
− | + | '''(i)''' | |
<br> '''Solution: ''' | <br> '''Solution: ''' | ||
Line 25: | Line 25: | ||
+ | '''(ii)''' | ||
<br> '''Solution: ''' | <br> '''Solution: ''' | ||
Line 44: | Line 45: | ||
+ | ---- | ||
+ | ---- | ||
+ | <font face="serif"></font><math>\color{blue}\text{Related Problem: For function }</math> | ||
+ | |||
+ | <math>f\left( x_{1},x_{2} \right) =\frac{1}{3} x_{1}^{3} + \frac{1}{3} x_{2}^{3} -x_{1}x_{2}</math> | ||
+ | |||
+ | <math>\color{blue} \text{Find point(s) that satisfy FONC and check if they are strict local minimizers.}</math> | ||
+ | |||
+ | <math>\color{blue}\text{Solution:}</math> | ||
+ | |||
+ | <math>\text{Applying FONC gives } \nabla f\left ( x \right )=\begin{bmatrix} | ||
+ | x_{1}^{2}-x_{2}\\ | ||
+ | x_{2}^{2}-x_{1} | ||
+ | \end{bmatrix}=0</math> | ||
+ | |||
+ | <math>\Rightarrow x^{\left ( 1 \right )}=\begin{bmatrix} | ||
+ | 0\\ | ||
+ | 0 | ||
+ | \end{bmatrix} \text{ and }x^{\left ( 2 \right )}=\begin{bmatrix} | ||
+ | 1\\ | ||
+ | 1 | ||
+ | \end{bmatrix}</math> | ||
+ | |||
+ | <math>\text{The Hessian matrix: } F\left ( x \right )=\begin{bmatrix} | ||
+ | 2x_{1} & -1\\ | ||
+ | -1 & 2x_{2} | ||
+ | \end{bmatrix}</math> | ||
+ | |||
+ | <math>\text{The matrix } F\left ( x^{\left ( 1 \right )} \right )=\begin{bmatrix} | ||
+ | 0 & -1\\ | ||
+ | -1 & 0 | ||
+ | \end{bmatrix} \text{ is indefinite. The point is not a minimizer.}</math> | ||
+ | |||
+ | <math>\text{The matrix } F\left ( x^{\left ( 2\right )} \right )=\begin{bmatrix} | ||
+ | 0 & -1\\ | ||
+ | -1 & 0 | ||
+ | \end{bmatrix} \text{ is positive definite. }</math> | ||
+ | <math>\therefore x^{\left ( 2 \right )}=\begin{bmatrix} | ||
+ | 1\\ | ||
+ | 1 | ||
+ | \end{bmatrix} \text{ satisfies SOSC to be a strict local minimizer.}</math> | ||
[[ QE2012 AC-3 ECE580|Back to QE2012 AC-3 ECE580]] | [[ QE2012 AC-3 ECE580|Back to QE2012 AC-3 ECE580]] |
Revision as of 17:17, 26 January 2013
QE2012_AC-3_ECE580-1
(i)
Solution:
The reduction factor is (1 − ρ1)(1 − ρ2)(1 − ρ3)...(1 − ρN − 1) Since $ 1- \rho_{N-1} = \frac{F_{2}}{F_{3}} = \frac{2}{3}, $ we have $ 1- \rho_{N-2} = \frac{F_{3}}{F_{4}} $ and so on.
Then, we have $ (1- \rho_{1})(1- \rho_{2})(1- \rho_{3})...(1- \rho_{N-1}) = \frac{F_{N}}{F_{N+1}} \frac{F_{N-1}}{F_{N}} ... \frac{F_{2}}{F_{3}} = \frac{F_{2}}{F_{N+1}} $ Therefore, the reduction factor is $ \frac{2}{F_{N+1}} $
Solution 2:
The uncertainty interval is reduced by $ (1- \rho_{1})(1- \rho_{2})(1- \rho_{3})...(1- \rho_{N-1}) = \frac{F_{N}}{F_{N+1}} \frac{F_{N-1}}{F_{N}} ... \frac{F_{2}}{F_{3}} = \frac{F_{2}}{F_{N+1}} $
(ii)
Solution:
Final Range: 1.0; Initial Range: 20.
$ \frac{2}{F_{N+1}} \le \frac{1.0}{20} $, or $ F_{N+1} \ge 40 $
So, N + 1 = 9
Therefore, the minimal iterations is N-1 or 7.
Solution 2:
Since the final range is $ 1.0 $ and the initial range is $ 20 $, we can say $ \frac{2}{F_{N+1}} \le \frac{1.0}{20} or equivalently F_{N+1}} \ge 40 $ From the inequality, we get $ F_{N+1} \ge 40 , so N+1=9 $. Therefore the minimum number of iteration is N-1=7
$ \color{blue}\text{Related Problem: For function } $
$ f\left( x_{1},x_{2} \right) =\frac{1}{3} x_{1}^{3} + \frac{1}{3} x_{2}^{3} -x_{1}x_{2} $
$ \color{blue} \text{Find point(s) that satisfy FONC and check if they are strict local minimizers.} $
$ \color{blue}\text{Solution:} $
$ \text{Applying FONC gives } \nabla f\left ( x \right )=\begin{bmatrix} x_{1}^{2}-x_{2}\\ x_{2}^{2}-x_{1} \end{bmatrix}=0 $
$ \Rightarrow x^{\left ( 1 \right )}=\begin{bmatrix} 0\\ 0 \end{bmatrix} \text{ and }x^{\left ( 2 \right )}=\begin{bmatrix} 1\\ 1 \end{bmatrix} $
$ \text{The Hessian matrix: } F\left ( x \right )=\begin{bmatrix} 2x_{1} & -1\\ -1 & 2x_{2} \end{bmatrix} $
$ \text{The matrix } F\left ( x^{\left ( 1 \right )} \right )=\begin{bmatrix} 0 & -1\\ -1 & 0 \end{bmatrix} \text{ is indefinite. The point is not a minimizer.} $
$ \text{The matrix } F\left ( x^{\left ( 2\right )} \right )=\begin{bmatrix} 0 & -1\\ -1 & 0 \end{bmatrix} \text{ is positive definite. } $
$ \therefore x^{\left ( 2 \right )}=\begin{bmatrix} 1\\ 1 \end{bmatrix} \text{ satisfies SOSC to be a strict local minimizer.} $