Line 3: | Line 3: | ||
:[[QE2012_AC-3_ECE580-1|Part 1]],[[QE2012_AC-3_ECE580-2|2]],[[QE2012_AC-3_ECE580-3|3]],[[QE2012_AC-3_ECE580-4|4]],[[QE2012_AC-3_ECE580-5|5]] | :[[QE2012_AC-3_ECE580-1|Part 1]],[[QE2012_AC-3_ECE580-2|2]],[[QE2012_AC-3_ECE580-3|3]],[[QE2012_AC-3_ECE580-4|4]],[[QE2012_AC-3_ECE580-5|5]] | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
<br> Solution: | <br> Solution: |
Revision as of 05:29, 26 January 2013
QE2012_AC-3_ECE580-1
Solution:
The reduction factor is (1 − ρ1)(1 − ρ2)(1 − ρ3)...(1 − ρN − 1) Since $ 1- \rho_{N-1} = \frac{F_{2}}{F_{3}} = \frac{2}{3}, $ we have $ 1- \rho_{N-2} = \frac{F_{3}}{F_{4}} $ and so on.
Then, we have $ (1- \rho_{1})(1- \rho_{2})(1- \rho_{3})...(1- \rho_{N-1}) = \frac{F_{N}}{F_{N+1}} \frac{F_{N-1}}{F_{N}} ... \frac{F_{2}}{F_{3}} = \frac{F_{2}}{F_{N+1}} $ Therefore, the reduction factor is $ \frac{2}{F_{N+1}} $
Solution 2:
The uncertainty interval is reduced by $ (1- \rho_{1})(1- \rho_{2})(1- \rho_{3})...(1- \rho_{N-1}) = \frac{F_{N}}{F_{N+1}} \frac{F_{N-1}}{F_{N}} ... \frac{F_{2}}{F_{3}} = \frac{F_{2}}{F_{N+1}} $
Solution:
Final Range: 1.0; Initial Range: 20.
$ \frac{2}{F_{N+1}} \le \frac{1.0}{20} $, or $ F_{N+1} \ge 40 $
So, N + 1 = 9
Therefore, the minimal iterations is N-1 or 7.
Solution 2:
Since the final range is $ 1.0 $ and the initial range is $ 20 $, we can say $ \frac{2}{F_{N+1}} \le \frac{1.0}{20} or equivalently F_{N+1}} \ge 40 $ From the inequality, we get $ F_{N+1} \ge 40 , so N+1=9 $. Therefore the minimum number of iteration is N-1=7