Line 1: | Line 1: | ||
+ | [[Category:Complex Number Magnitude]] | ||
+ | [[Category:ECE301]] | ||
==Norm and Agrument of a Complex Number ([[Homework_1_ECE301Fall2008mboutin|HW1]], [[ECE301]], [[Main_Page_ECE301Fall2008mboutin|Fall 2008]])== | ==Norm and Agrument of a Complex Number ([[Homework_1_ECE301Fall2008mboutin|HW1]], [[ECE301]], [[Main_Page_ECE301Fall2008mboutin|Fall 2008]])== | ||
Latest revision as of 04:36, 23 September 2011
Norm and Agrument of a Complex Number (HW1, ECE301, Fall 2008)
For any complex number
- $ z = x + iy\, $
The norm (absolute value) of $ z\, $ is given by ( see important comment on this page regarding using the term "absolute value" only for real numbers)
- $ |z| = \sqrt{x^2+y^2} $
The argument of $ z\, $ is given by
- $ \phi = arctan (y/x)\, $
Conversion from Cartesian to Polar Form
- $ x = r\cos \phi\, $
- $ y = \sin \phi\, $
- $ z = x + iy = r(\cos \phi + i \sin \phi ) = r e^i\phi\, $
Back to ECE301 Fall 2008 Prof. Boutin