(New page: Definition A random sequence or a discrete-time random process is a sequence of random variables <math>\mathbf{X}_{1},\cdots,\mathbf{X}_{n},\cdots</math> defined on a probability space <...)
 
Line 1: Line 1:
Definition
+
[[Category:random variables]]
 +
[[Category:ECE600]]
 +
[[Category:Sangchun Han]]
 +
=Sequences of Random Variables=
 +
From the course notes of  [[user:han84|Sangchun Han]], [[ECE]] PhD student.
 +
----
 +
Definition:
  
 
A random sequence or a discrete-time random process is a sequence of random variables <math>\mathbf{X}_{1},\cdots,\mathbf{X}_{n},\cdots</math>  defined on a probability space <math>\left(\mathcal{S},\mathcal{F},P\right)</math> .
 
A random sequence or a discrete-time random process is a sequence of random variables <math>\mathbf{X}_{1},\cdots,\mathbf{X}_{n},\cdots</math>  defined on a probability space <math>\left(\mathcal{S},\mathcal{F},P\right)</math> .
Line 8: Line 14:
  
 
• For any specific <math>\omega_{0}\in\mathcal{S}</math> , <math>\mathbf{X}_{1}\left(\omega_{0}\right),\cdots,\mathbf{X}_{n}\left(\omega_{0}\right),\cdots</math>  is a sequence of real numbers.
 
• For any specific <math>\omega_{0}\in\mathcal{S}</math> , <math>\mathbf{X}_{1}\left(\omega_{0}\right),\cdots,\mathbf{X}_{n}\left(\omega_{0}\right),\cdots</math>  is a sequence of real numbers.
 
+
----
 
*[[ECE 600 Convergence|Convergence]]
 
*[[ECE 600 Convergence|Convergence]]
 
*[[ECE 600 Chebyshev Inequality|Chebyshev Inequality]]
 
*[[ECE 600 Chebyshev Inequality|Chebyshev Inequality]]
Line 15: Line 21:
 
*[[ECE 600 Central Limit Theorem|Central Limit Theorem]]
 
*[[ECE 600 Central Limit Theorem|Central Limit Theorem]]
 
*[[ECE 600 Random Sum|Random Sum]]
 
*[[ECE 600 Random Sum|Random Sum]]
 +
----
 +
[[ECE600|Back to ECE600]]

Revision as of 11:57, 17 November 2010

Sequences of Random Variables

From the course notes of Sangchun Han, ECE PhD student.


Definition:

A random sequence or a discrete-time random process is a sequence of random variables $ \mathbf{X}_{1},\cdots,\mathbf{X}_{n},\cdots $ defined on a probability space $ \left(\mathcal{S},\mathcal{F},P\right) $ .

Note

• We often write this random sequence as $ \left\{ \mathbf{X}_{n}\right\} $ or $ \left\{ \mathbf{X}_{n}\right\} _{n\geq1} $ or $ \left\{ \mathbf{X}_{n}\right\} _{n\in\mathbf{N}} $ .

• For any specific $ \omega_{0}\in\mathcal{S} $ , $ \mathbf{X}_{1}\left(\omega_{0}\right),\cdots,\mathbf{X}_{n}\left(\omega_{0}\right),\cdots $ is a sequence of real numbers.



Back to ECE600

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood