(New page: Definition A random sequence or a discrete-time random process is a sequence of random variables <math>\mathbf{X}_{1},\cdots,\mathbf{X}_{n},\cdots</math> defined on a probability space <...) |
|||
Line 1: | Line 1: | ||
− | Definition | + | [[Category:random variables]] |
+ | [[Category:ECE600]] | ||
+ | [[Category:Sangchun Han]] | ||
+ | =Sequences of Random Variables= | ||
+ | From the course notes of [[user:han84|Sangchun Han]], [[ECE]] PhD student. | ||
+ | ---- | ||
+ | Definition: | ||
A random sequence or a discrete-time random process is a sequence of random variables <math>\mathbf{X}_{1},\cdots,\mathbf{X}_{n},\cdots</math> defined on a probability space <math>\left(\mathcal{S},\mathcal{F},P\right)</math> . | A random sequence or a discrete-time random process is a sequence of random variables <math>\mathbf{X}_{1},\cdots,\mathbf{X}_{n},\cdots</math> defined on a probability space <math>\left(\mathcal{S},\mathcal{F},P\right)</math> . | ||
Line 8: | Line 14: | ||
• For any specific <math>\omega_{0}\in\mathcal{S}</math> , <math>\mathbf{X}_{1}\left(\omega_{0}\right),\cdots,\mathbf{X}_{n}\left(\omega_{0}\right),\cdots</math> is a sequence of real numbers. | • For any specific <math>\omega_{0}\in\mathcal{S}</math> , <math>\mathbf{X}_{1}\left(\omega_{0}\right),\cdots,\mathbf{X}_{n}\left(\omega_{0}\right),\cdots</math> is a sequence of real numbers. | ||
− | + | ---- | |
*[[ECE 600 Convergence|Convergence]] | *[[ECE 600 Convergence|Convergence]] | ||
*[[ECE 600 Chebyshev Inequality|Chebyshev Inequality]] | *[[ECE 600 Chebyshev Inequality|Chebyshev Inequality]] | ||
Line 15: | Line 21: | ||
*[[ECE 600 Central Limit Theorem|Central Limit Theorem]] | *[[ECE 600 Central Limit Theorem|Central Limit Theorem]] | ||
*[[ECE 600 Random Sum|Random Sum]] | *[[ECE 600 Random Sum|Random Sum]] | ||
+ | ---- | ||
+ | [[ECE600|Back to ECE600]] |
Revision as of 11:57, 17 November 2010
Sequences of Random Variables
From the course notes of Sangchun Han, ECE PhD student.
Definition:
A random sequence or a discrete-time random process is a sequence of random variables $ \mathbf{X}_{1},\cdots,\mathbf{X}_{n},\cdots $ defined on a probability space $ \left(\mathcal{S},\mathcal{F},P\right) $ .
Note
• We often write this random sequence as $ \left\{ \mathbf{X}_{n}\right\} $ or $ \left\{ \mathbf{X}_{n}\right\} _{n\geq1} $ or $ \left\{ \mathbf{X}_{n}\right\} _{n\in\mathbf{N}} $ .
• For any specific $ \omega_{0}\in\mathcal{S} $ , $ \mathbf{X}_{1}\left(\omega_{0}\right),\cdots,\mathbf{X}_{n}\left(\omega_{0}\right),\cdots $ is a sequence of real numbers.
- Convergence
- Chebyshev Inequality
- Weak law of large numbers
- Strong law of large numbers (Borel)
- Central Limit Theorem
- Random Sum