Line 18: Line 18:
 
Q2. Suppose that the LTI filter <math>h_1</math> satifies the following difference equation between input <math>x[n]</math> and output <math>y[n]</math>.
 
Q2. Suppose that the LTI filter <math>h_1</math> satifies the following difference equation between input <math>x[n]</math> and output <math>y[n]</math>.
  
<math> {\color{White}ab} y[n] = h_1[n]\;\ast\;x[n] = \frac{1}{4} y[n-1] + x[n] </math>
+
<math> {\color{White}ab} y[n] = h_1[n]\;\ast\;x[n] = \frac{1}{4} y[n-1] + x[n] </math>  
 +
 
 +
(<math>\ast</math> implies the convolution)
  
 
Then, find the inverse LTI filter <math>h_2</math> of <math>h_1</math>, which satisfies the following relationship for any discrete-time signal <math>x[n]</math>,
 
Then, find the inverse LTI filter <math>h_2</math> of <math>h_1</math>, which satisfies the following relationship for any discrete-time signal <math>x[n]</math>,

Revision as of 18:11, 8 October 2010


Under construction -Jaemin


Quiz Questions Pool for Week 8


Q1. Find the impulse response of the following LTI systems and draw their block diagram.

(assume that the impulse response is causal and zero when $ n<0 $)

$ {\color{White}ab}\text{a)}{\color{White}abc}y[n] = 0.6 y[n-1] + 0.4 x[n] $

$ {\color{White}ab}\text{b)}{\color{White}abc}y[n] = y[n-1] + 0.25(x[n] - x[n-3]) $


Q2. Suppose that the LTI filter $ h_1 $ satifies the following difference equation between input $ x[n] $ and output $ y[n] $.

$ {\color{White}ab} y[n] = h_1[n]\;\ast\;x[n] = \frac{1}{4} y[n-1] + x[n] $

($ \ast $ implies the convolution)

Then, find the inverse LTI filter $ h_2 $ of $ h_1 $, which satisfies the following relationship for any discrete-time signal $ x[n] $,

(assume that the impulse responses are causal and zero when $ n<0 $)

$ {\color{White}ab} x[n] = h_2[n]\;\ast\;h_1[n]\;\ast\;x[n] $


$ \text{Q3.} $


$ \text{Q4.} $


$ \text{Q5.} $


$ \text{Q6.} $


Back to ECE 438 Fall 2010 Lab Wiki Page

Back to ECE 438 Fall 2010

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood