Solution to Q2 of Week 8 Quiz Pool



First, find the impulse response of $ h_1[n] $. (we assumed that $ h_1[n]=0 $ when $ n<0 $)

$ \begin{align} & h_1[n] = 0.25 h_1[n-1] + \delta[n] \\ & h_1[0]=1 \\ & h_1[1]=0.25h_1[0]=0.25 \\ & h_1[2]=0.25h_1[1]=\left(0.25\right)^2 \\ & \ldots \\ & h_1[n] = \left(0.25\right)^n u[n] \\ \end{align}\,\! $


In order to satisfy $ x[n]=h_2[n]\ast h_1[n]\ast x[n] $ for any discrete-time signal $ x[n] $,

$ h_2[n] $ must satisfy $ h_2[n]\ast h_1[n] = \delta[n] $.


Therefore, their Z-transform must satisfy $ H_1(z) H_2(z) = 1 $.

Since $ H_1(z)=\frac{1}{1-0.25z^{-1}} $, it follows that

$ H_2(z)=\frac{1}{H_1(z)}=1-0.25z^{-1} $

By its casual assumption, $ h_2[n]=\delta[n]-0.25\delta[n-1]\,\! $.


Then, the difference equation of the LTI system with the impulse reponss of $ h_2[n] $ is,

$ y[n]=x[n]-0.25x[n-1]\,\! $



Back to Lab Week 8 Quiz Pool

Back to ECE 438 Fall 2010 Lab Wiki Page

Back to ECE 438 Fall 2010

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva