Line 9: Line 9:
 
?
 
?
  
We then presented the analytic expression for <math>\vec{w}_0</math>, the argmax of <math>J(\vec{w})</math>, and related <math>\vec{w}_0</math> to the least square solution of <math>Y \vec{c}=b</math>. Finally, we began Section 9 of the course on Support Vector Machines by introducing the idea of extending the feature vector space into a space spanned by monomials.  
+
We then presented the analytic expression for <math>\vec{w}_0</math>, the argmax of <math>J(\vec{w})</math>, and related <math>\vec{w}_0</math> to the least square solution of <math>Y \vec{c}=b</math>. We noted the relationship between [[Fisher Linear Discriminant|Fisher's linear discriminant]] and [[Feature Extraction|feature extraction]].
 +
Finally, we began Section 9 of the course on [[Support Vector Machines]] by introducing the idea of extending the feature vector space into a space spanned by monomials.  
  
 
==Useful Links==
 
==Useful Links==

Revision as of 10:20, 13 April 2010


Details of Lecture 22, ECE662 Spring 2010

In Lecture 22, we continued our discussion of Fisher's linear discriminant. We began by answering the question: why not use

$ J(\vec{w})=\frac{\| \tilde{m}_1-\tilde{m}_2\|^2}{\|\vec{w} \|^2} $ instead of $ J(\vec{w})=\frac{\| \tilde{m}_1-\tilde{m}_2 \|^2}{\tilde{s}_1^2+\tilde{s}_2^2} $ ?

We then presented the analytic expression for $ \vec{w}_0 $, the argmax of $ J(\vec{w}) $, and related $ \vec{w}_0 $ to the least square solution of $ Y \vec{c}=b $. We noted the relationship between Fisher's linear discriminant and feature extraction. Finally, we began Section 9 of the course on Support Vector Machines by introducing the idea of extending the feature vector space into a space spanned by monomials.

Useful Links

For more info, you may look at these students' pages on Fisher's linear discriminant:


Previous: Lecture 21 Next: Lecture 23


Back to course outline

Back to 2010 Spring ECE 662 mboutin

Back to ECE662

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett