Line 11: | Line 11: | ||
== Problem 4 == | == Problem 4 == | ||
− | Hint: You may run into troubles when computing <math>a_0</math> using the general formula <math>a_k = \frac1T\int_{T}x(t)e^{-jk\omega_0t}dt</math>. Instead compute <math>a_0 = \frac1T\int_{T}x(t)dt</math>. | + | Hint: You may run into troubles when computing <math>a_0</math> using the general formula <math>a_k = \frac1T\int_{T}x(t)e^{-jk\omega_0t}dt</math>. Instead compute <math>a_0 = \frac1T\int_{T}x(t)dt</math>. - Landis |
Back to [[Homework]] | Back to [[Homework]] |
Revision as of 10:51, 8 July 2009
Contents
Problem 1
Problem 2
Problem 3
HW 3.3 - Ryne Rayburn_ECE301_Summer2009
HW 3.3 - Vishal Ramani_ECE301_Summer2009
HW 3.3 - Adam Frey_ECE301_Summer2009
Problem 4
Hint: You may run into troubles when computing $ a_0 $ using the general formula $ a_k = \frac1T\int_{T}x(t)e^{-jk\omega_0t}dt $. Instead compute $ a_0 = \frac1T\int_{T}x(t)dt $. - Landis
Back to Homework