Adam Frey

Proof of Parseval's Relation in Continuous-Time Transform 4.3.7

If x(t) and X(jt) are a Fourier transform pair, then :

$ \int_{-\infty}^\infty |x(t)|^2\,dt = \frac{1}{2\pi} \int_{-\infty}^\infty |X(jw)|^2\,dw $

This is known as Parseval's Relation and results from direct application of the Fourier transform :

$ \int_{-\infty}^\infty |x(t)|^2\,dt = \int_{-\infty}^\infty x(t)x^*(t)\,dt $

 $  =   \int_{-\infty}^\infty    x(t)[ \frac{1}{2\pi}   \int_{-\infty}^\infty X^* (jw)e^{(-jwt)} dw   ]dt       $

Reversing the order of integration results in:

$ \int_{-\infty}^\infty |x(t)|^2\,dt = \frac{1}{2\pi} \int_{-\infty}^\infty X^*(jw) [ \int_{-\infty}^\infty x(t) e^{(-jwt)} dt ]dw $

The bracketed term is simply the Fourier transform of x(t); therefore,

$ \int_{-\infty}^\infty |x(t)|^2\,dt = \frac{1}{2\pi} \int_{-\infty}^\infty | X(jw) |^2 dw $


Back to Homework 3

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett