(Problem 4: No Deal)
(Problem 2: Locked Doors)
Line 11: Line 11:
 
*(a)  A key that does not work is put back in his pocket so that when he picks another key, all <math>n</math> keys are equally likely to be picked (sampling with replacement).
 
*(a)  A key that does not work is put back in his pocket so that when he picks another key, all <math>n</math> keys are equally likely to be picked (sampling with replacement).
 
*(b)  A key that does not work is put in his briefcase so that when he picks another key, he picks at random from those remaining in his pocket (sampling without replacement).
 
*(b)  A key that does not work is put in his briefcase so that when he picks another key, he picks at random from those remaining in his pocket (sampling without replacement).
 +
 +
 +
[[2a Ken Pesyna_ECE302Fall2008sanghavi]]
  
 
== Problem 3: It Pays to Study ==
 
== Problem 3: It Pays to Study ==

Revision as of 11:16, 18 September 2008

Instructions

Homework 4 can be downloaded here on the ECE 302 course website.

Problem 1: Binomial Proofs

Let $ X $ denote a binomial random variable with parameters $ (N, p) $.

  • (a) Show that $ Y = N - X $ is a binomial random variable with parameters $ (N,1-p) $
  • (b) What is $ P\{X $ is even}? Hint: Use the binomial theorem to write an expression for $ (x + y)^n + (x - y)^n $ and then set $ x = 1-p $, $ y = p $.

Problem 2: Locked Doors

An absent-minded professor has $ n $ keys in his pocket of which only one (he does not remember which one) fits his office door. He picks a key at random and tries it on his door. If that does not work, he picks a key again to try, and so on until the door unlocks. Let $ X $ denote the number of keys that he tries. Find $ E[X] $ in the following two cases.

  • (a) A key that does not work is put back in his pocket so that when he picks another key, all $ n $ keys are equally likely to be picked (sampling with replacement).
  • (b) A key that does not work is put in his briefcase so that when he picks another key, he picks at random from those remaining in his pocket (sampling without replacement).


2a Ken Pesyna_ECE302Fall2008sanghavi

Problem 3: It Pays to Study

There are $ n $ multiple-choice questions in an exam, each with 5 choices. The student knows the correct answer to $ k $ of them, and for the remaining $ n-k $ guesses one of the 5 randomly. Let $ C $ be the number of correct answers, and $ W $ be the number of wrong answers.

  • (a) What is the distribution of $ W $? Is $ W $ one of the common random variables we have seen in class?
  • (b) What is the distribution of $ C $? What is its mean, $ E[C] $?

Problem 4: No Deal

In "Deal or No Deal" (the most ridiculous game show on TV), there are 5 suitcases. The suitcases contain $1, $10, $100, $1,000 and $10,000, respectively. There is a "banker" who offers the contestant a dollar amount that he can take and go home, right then and there. If the contestant does not use the banker's offer, he can choose one of the suitcases and "eliminate" it by removing it from play. Then he plays the next round with the remaining suitcases.

  • (a) The banker wants to offer an amount equal to the average of what will REMAIN, after the choice is made. (for example, if 1000 is chosen, then

the average of what will remain is (1 + 10 + 100 + 10000)/4.) Of course, the banker has to make an offer before the choice is made. What amount should the banker offer?

  • (b) The contestant has nerves of steel, and never takes up the banker's offer in any round. He thus goes home with one of the 5 suitcases. However, he has to pay a 30% tax on the amount he takes home. How much will he be left with on average, after taxes?

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett