The E[x] equation you come up with in this problem can be simplified (rid the summation term) by using a differentiated form of the commonly used geometric series equation: $ \sum_{n=0}^\infty r^n = 1/(1-r) $

Now take the derivative with respect to r and you get:

$ \sum_{n=0}^\infty nr^{n-1} = 1/(1-r)^2 $

You can use this equation to simplify your expected value.

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett