Line 122: Line 122:
  
 
'''Solution'''
 
'''Solution'''
 +
 +
Using Euler's fomula
 +
 +
<math>\begin{align}
 +
x_2[n] &= e^{j\frac{\pi}{3}n} \left ( \frac{1}{2} e^{j\frac{\pi}{6}} + \frac{1}{2}e^{-j\frac{\pi}{6}}\right ) \\
 +
&= \frac{1}{2}e^{\frac{\pi}{2}n} + \frac{1}{2}e^{j\frac{\pi}{6}n}
 +
\end{align}</math>
  
 
g) <math>x_8[n]= (-j)^n .</math>
 
g) <math>x_8[n]= (-j)^n .</math>

Revision as of 14:01, 7 October 2014


Homework 5 Solution, ECE438, Fall 2014

Questions 1

Compute the DFT of the following signals x[n] (if possible). How does your answer relate to the Fourier series coefficients of x[n]?

a) $ x_1[n] = \left\{ \begin{array}{ll} 1, & n \text{ multiple of } N\\ 0, & \text{ else}. \end{array} \right. $

Solution

The period of the input is N, so we will calculate the N-point DFT:

$ \begin{align} X_n[k]&=\sum_{n=0}^{N-1} x[n] e^{-j2\pi kn /N} \\ &= 1e^{-j2\pi k 0 /N} + 0e^{-j2\pi k1 /N} + \ldots + 0e^{-j2\pi k(N-1) /N} \\ &= 1 \text{ for all } k \end{align} $

b) $ x_1[n]= e^{j \frac{2}{3} \pi n} $

Solution

Notice that the period is 3, so we will calculate the 3-point DFT. Beginning with the inverse-DFT:

$ \begin{align} x[n]&=\frac{1}{3} \sum_{k=0}^{2} X_3[k] e^{j2\pi kn/3} \\ &= \frac{1}{3} \left ( X_3[0]e^{j2\pi k0/3} + X_3[1]e^{j2\pi k1/3} + X_3[2]e^{j2\pi k2/3} \right ) \\ &= e^{j2\pi n/3} \end{align} $

From this we can see that

$ X_3[1]=3 \mbox{, and } X_3[0]=X_3[2]=0 $

or

$ X_3[k]=\begin{cases} 3\mbox{, }k=1\\ 0\mbox{, else} \end{cases} \mbox{ , periodic with period} = 3 $

c) $ x_5[n]= e^{-j \frac{2}{1000} \pi n} $

Solution

The period of this signal is 1000. To make life easier, we will multiple by a factor (noting that the factor is always 1, so it doesn't change the signal):

$ \begin{align} x_5[n]&=e^{-j \frac{2}{1000} \pi n}e^{j2\pi n} \\ &= e^{j2\pi \frac{1000-1}{1000}} \\ &=e^{j2\pi \frac{998}{1000}} \end{align} $

The positive exponent is easier to deal with.

Now we can use the inverse transform as before, using a 1000-point IDFT:

$ \begin{align} x_5[n] &= \frac{1}{1000} \sum_{k=0}^{k=999} X_{1000}[k]e^{j2\pi k n/1000} \\ &= e^{j2\pi \frac{999}{1000}} \end{align} $

By matching terms, we can see that

$ X_{1000}[k]=\begin{cases} 1000&\mbox{, if }k=999 \\ 0 &\mbox{, else} \end{cases} $

d) $ x_2[n]= e^{j \frac{2}{\sqrt{3}} \pi n} $

Solution

The period of the input is $ \sqrt{3} $. We cannot take a $ \sqrt{3} $-point DFT (only integer values).

e) $ x_6[n]= \cos\left( \frac{2}{1000} \pi n\right) ; $

Solution

First, use Euler's formula

$ x_6[n]=\frac{1}{2} e^{j2\pi n/1000} + \frac{1}{2}e^{-j2\pi n/1000} $

As in d), change the exponents so they are both positive:

$ \begin{align} x_6[n]&=\frac{1}{2} e^{j2\pi n/1000} + \frac{1}{2}e^{-j2\pi n/1000}e^{2\pi n} \\ &=\frac{1}{2} e^{j2\pi n/1000} + \frac{1}{2}e^{j2\pi 999n/1000} \end{align} $

Then looking at the 1000-point inverse DFT:

$ \begin{align} x_6[n] &= \frac{1}{1000} \sum_{k=0}^{999} X_{1000}[k]e^{j2\pi kn/1000} \\ &= \frac{1}{2} e^{j2\pi n/1000} + \frac{1}{2}e^{j2\pi 999n/1000} \end{align} $

Again, by matching terms we can see that

$ X_{1000}[k] = \begin{cases} 500&\mbox{, if } k=1 \mbox{ or }k=999 \\ 0 &\mbox{, else} \end{cases} $

f) $ x_2[n]= e^{j \frac{\pi}{3} n } \cos ( \frac{\pi}{6} n ) $

Solution

Using Euler's fomula

$ \begin{align} x_2[n] &= e^{j\frac{\pi}{3}n} \left ( \frac{1}{2} e^{j\frac{\pi}{6}} + \frac{1}{2}e^{-j\frac{\pi}{6}}\right ) \\ &= \frac{1}{2}e^{\frac{\pi}{2}n} + \frac{1}{2}e^{j\frac{\pi}{6}n} \end{align} $

g) $ x_8[n]= (-j)^n . $

h) $ x_3[n] =(\frac{1}{\sqrt{2}}+j \frac{1}{\sqrt{2}})^n $

Note: All of these DFTs are VERY simple to compute. If your computation looks like a monster, look for a simpler approach!


Question 2

Compute the inverse DFT of $ X[k]= e^{j \pi k }+e^{-j \frac{\pi}{2} k} $.

Note: Again, this is a VERY simple problem. Have pity for your grader, and try to use a simple approach!


Question 3

Prove the time shifting property of the DFT.


Discussion

You may discuss the homework below.

  • write comment/question here
    • answer will go here

Back to ECE438, Fall 2014, Prof. Boutin

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang