Line 19: Line 19:
 
\end{align}
 
\end{align}
 
</math><br>
 
</math><br>
Where the last line is by the [https://www.projectrhea.org/rhea/index.php/Homework_3_ECE438F09 scaling] property of the delta function.
+
Where the last line follows from the [https://www.projectrhea.org/rhea/index.php/Homework_3_ECE438F09 scaling] property of the delta function.
 
----
 
----
 
===A sine===  
 
===A sine===  
<math> x(t)=sin(t) </math>
+
<math>
 +
\begin{align}
 +
x(t)=sin(2\pi f_0 t) =\frac{1}{2j} e^{j2\pi f_0 t} - \frac{1}{2j} e^{-j2\pi f_0 t}
 +
\end{align}</math> <br>
 +
 
 +
<math>
 +
\begin{align}
 +
\mathcal{F} \left \{ sin (2 \pi f_0 t) \right \} &= \mathcal{F} \left \{ \frac{1}{2j} e^{j2\pi f_0 t} - \frac{1}{2j} e^{-j2\pi f_0 t} \right \} \\
 +
&= \frac{2 \pi}{2j} \delta (2\pi f - 2\pi f_0) - \frac{2 \pi}{2 j} \delta(2\pi f + 2 \pi f_0)  \mbox{, using the transform of the complex exponential} \\
 +
&= \frac{1}{2j}\delta(f-f_0) - \frac{1}{2j}\delta(f+f_0) \mbox{, by the scaling property of the delta}
 +
\end{align}
 +
</math>
 
----
 
----
 
===A cosine===
 
===A cosine===
<math>x(t)=cos(t)</math>
+
<math>x(t)=cos(2\pi f_0 t) = \frac{1}{2}e^{j2\pi f_0t} + \frac{1}{2}e^{-j2\pi f_0 t}</math>
 +
 
 +
<math>
 +
\begin{align}
 +
\mathcal{F} \left \{ cos (2 \pi f_0 t) \right \} &= \mathcal{F} \left \{ \frac{1}{2} e^{j2\pi f_0 t} + \frac{1}{2} e^{-j2\pi f_0 t} \right \} \\
 +
&= \frac{2 \pi}{2} \delta (2\pi f - 2\pi f_0) + \frac{2 \pi}{2 } \delta(2\pi f + 2 \pi f_0)  \mbox{, using the transform of the complex exponential} \\
 +
&= \frac{1}{2}\delta(f-f_0) + \frac{1}{2}\delta(f+f_0) \mbox{, by the scaling property of the delta}
 +
\end{align}
 +
</math>
 +
 
 
----
 
----
 
===A periodic function===
 
===A periodic function===

Revision as of 16:36, 8 September 2014


Homework 1 Solution, ECE438, Fall 2014, Prof. Boutin


A complex exponential

$ x(t)=e^{j2 \pi f_0 t} $

From table, $ e^{j\omega_0t} \leftrightarrow 2\pi \delta(\omega - \omega_0) $, therefore
$ \begin{align} e^{j2\pi f_0 t } \leftrightarrow &2\pi \delta(2\pi f - 2\pi f_0) \\ &=\delta(f - f_0) \end{align} $
Where the last line follows from the scaling property of the delta function.


A sine

$ \begin{align} x(t)=sin(2\pi f_0 t) =\frac{1}{2j} e^{j2\pi f_0 t} - \frac{1}{2j} e^{-j2\pi f_0 t} \end{align} $

$ \begin{align} \mathcal{F} \left \{ sin (2 \pi f_0 t) \right \} &= \mathcal{F} \left \{ \frac{1}{2j} e^{j2\pi f_0 t} - \frac{1}{2j} e^{-j2\pi f_0 t} \right \} \\ &= \frac{2 \pi}{2j} \delta (2\pi f - 2\pi f_0) - \frac{2 \pi}{2 j} \delta(2\pi f + 2 \pi f_0) \mbox{, using the transform of the complex exponential} \\ &= \frac{1}{2j}\delta(f-f_0) - \frac{1}{2j}\delta(f+f_0) \mbox{, by the scaling property of the delta} \end{align} $


A cosine

$ x(t)=cos(2\pi f_0 t) = \frac{1}{2}e^{j2\pi f_0t} + \frac{1}{2}e^{-j2\pi f_0 t} $

$ \begin{align} \mathcal{F} \left \{ cos (2 \pi f_0 t) \right \} &= \mathcal{F} \left \{ \frac{1}{2} e^{j2\pi f_0 t} + \frac{1}{2} e^{-j2\pi f_0 t} \right \} \\ &= \frac{2 \pi}{2} \delta (2\pi f - 2\pi f_0) + \frac{2 \pi}{2 } \delta(2\pi f + 2 \pi f_0) \mbox{, using the transform of the complex exponential} \\ &= \frac{1}{2}\delta(f-f_0) + \frac{1}{2}\delta(f+f_0) \mbox{, by the scaling property of the delta} \end{align} $


A periodic function

$ x(t)=x(t-T) $


An impulse train

$ x(t)=\sum_{n=-\infty}^{\infty} \delta (t-nT) $


Discussion

You may discuss the homework below.

  • write comment/question here
    • answer will go here

Back to ECE438, Fall 2014, Prof. Boutin

Alumni Liaison

EISL lab graduate

Mu Qiao