Line 59: Line 59:
 
[[Lecture1ECE438F14|Lecture 1]], [[Lecture2ECE438F14|2]], [[Lecture3ECE438F14|3]] ,[[Lecture4ECE438F14|4]] ,[[Lecture5ECE438F14|5]] ,[[Lecture6ECE438F14|6]] ,[[Lecture7ECE438F14|7]] ,[[Lecture8ECE438F14|8]] ,[[Lecture9ECE438F14|9]] ,[[Lecture10ECE438F14|10]] ,[[Lecture11ECE438F14|11]] ,[[Lecture12ECE438F14|12]] ,[[Lecture13ECE438F14|13]] ,[[Lecture14ECE438F14|14]] ,[[Lecture15ECE438F14|15]] ,[[Lecture16ECE438F14|16]] ,[[Lecture17ECE438F14|17]] ,[[Lecture18ECE438F14|18]] ,[[Lecture19ECE438F14|19]] ,[[Lecture20ECE438F14|20]] ,[[Lecture21ECE438F14|21]] ,[[Lecture22ECE438F14|22]] ,[[Lecture23ECE438F14|23]] ,[[Lecture24ECE438F14|24]] ,[[Lecture25ECE438F14|25]] ,[[Lecture26ECE438F14|26]] ,[[Lecture27ECE438F14|27]] ,[[Lecture28ECE438F14|28]] ,[[Lecture29ECE438F14|29]] ,[[Lecture30ECE438F14|30]] ,[[Lecture31ECE438F14|31]] ,[[Lecture32ECE438F14|32]] ,[[Lecture33ECE438F14|33]] ,[[Lecture34ECE438F14|34]] ,[[Lecture35ECE438F14|35]] ,[[Lecture36ECE438F14|36]] ,[[Lecture37ECE438F14|37]] ,[[Lecture38ECE438F14|38]] ,[[Lecture39ECE438F14|39]] ,[[Lecture40ECE438F14|40]] ,[[Lecture41ECE438F14|41]] ,[[Lecture42ECE438F14|42]] ,[[Lecture43ECE438F14|43]] ,[[Lecture44ECE438F14|44]], [[final_examECE438F14|final exam]] .  
 
[[Lecture1ECE438F14|Lecture 1]], [[Lecture2ECE438F14|2]], [[Lecture3ECE438F14|3]] ,[[Lecture4ECE438F14|4]] ,[[Lecture5ECE438F14|5]] ,[[Lecture6ECE438F14|6]] ,[[Lecture7ECE438F14|7]] ,[[Lecture8ECE438F14|8]] ,[[Lecture9ECE438F14|9]] ,[[Lecture10ECE438F14|10]] ,[[Lecture11ECE438F14|11]] ,[[Lecture12ECE438F14|12]] ,[[Lecture13ECE438F14|13]] ,[[Lecture14ECE438F14|14]] ,[[Lecture15ECE438F14|15]] ,[[Lecture16ECE438F14|16]] ,[[Lecture17ECE438F14|17]] ,[[Lecture18ECE438F14|18]] ,[[Lecture19ECE438F14|19]] ,[[Lecture20ECE438F14|20]] ,[[Lecture21ECE438F14|21]] ,[[Lecture22ECE438F14|22]] ,[[Lecture23ECE438F14|23]] ,[[Lecture24ECE438F14|24]] ,[[Lecture25ECE438F14|25]] ,[[Lecture26ECE438F14|26]] ,[[Lecture27ECE438F14|27]] ,[[Lecture28ECE438F14|28]] ,[[Lecture29ECE438F14|29]] ,[[Lecture30ECE438F14|30]] ,[[Lecture31ECE438F14|31]] ,[[Lecture32ECE438F14|32]] ,[[Lecture33ECE438F14|33]] ,[[Lecture34ECE438F14|34]] ,[[Lecture35ECE438F14|35]] ,[[Lecture36ECE438F14|36]] ,[[Lecture37ECE438F14|37]] ,[[Lecture38ECE438F14|38]] ,[[Lecture39ECE438F14|39]] ,[[Lecture40ECE438F14|40]] ,[[Lecture41ECE438F14|41]] ,[[Lecture42ECE438F14|42]] ,[[Lecture43ECE438F14|43]] ,[[Lecture44ECE438F14|44]], [[final_examECE438F14|final exam]] .  
  
----
 
 
== Collectively Solved [[Digital_signal_processing_practice_problems_list|Practice Problems on Digital Signal Processing]]  ==
 
*CTFT
 
**[[practice_CTFT_computation_rect_and_sinc_ECE438F11|Compute the Fourier transform of a rect and a sinc]]
 
*DTFT
 
**[[practice_DTFT_computation_sine_ECE438F13|Compute the DT Fourier transform of a sinc]]
 
**[[practice_DTFT_computation_rect_ECE438F13|Compute the DT Fourier transform of a rect]]
 
*z-transform
 
**[[practice_z_transform_computation_1_ECE438F13|Compute this z-transform]]
 
**[[practice_z_transform_computation_2_ECE438F13|Compute this z-transform]]
 
**[[practice_z_transform_computation_3_ECE438F13|Compute this z-transform and obtain Fourier transform]]
 
**[[Practice_Question_inverse_z_transform_1_ECE438F13|Obtain the inverse z-transform]]
 
**[[Practice_Question_inverse_z_transform_2_ECE438F13|Obtain the inverse z-transform]]
 
**[[Practice_Question_inverse_z_transform_3_ECE438F13|Obtain the inverse z-transform]]
 
**[[Practice_Question_inverse_z_transform_4_ECE438F13|Obtain the inverse z-transform]]
 
**[[Practice_Question_inverse_z_transform_5_ECE438F13|Obtain the inverse z-transform]]
 
**[[Practice_Question_inverse_z_transform_6_ECE438F13|Obtain the inverse z-transform]]
 
 
----
 
----
 
== Homework  ==
 
== Homework  ==
Line 91: Line 73:
 
*[[HW11ECE438F14|HW11]],
 
*[[HW11ECE438F14|HW11]],
 
----
 
----
 +
==Slectures ==
 +
Post a link to your slecture page below the relevant topic. If you want to reserve a particular topic, write your name/nickname below the topic. Please no more than 4 students per topic. To build your slecture page, you should use the following template. (Coming soon.)
 +
*Topic 1: Fourier transform as a function of frequency <math>\omega</math> versus  Fourier transform as a function of frequency <math>f</math> (in hertz)
 +
**link to slecture page
 +
**link to slecture page
 +
**link to slecture page
 +
* Topic 2: Definition of the "rep" and "comb" operators
 +
**link to slecture page
 +
**link to slecture page
 +
* Topic 3: Fourier transform of "rep" and "comb"
 +
*Topic 4: Discrete-time Fourier transform (DTFT): definition, periodicity property, example (computation of DTFT of a complex exponential)
 +
*Topic 5: Discrete-time Fourier transform (DTFT) of a sampled cosine. Case 1) sampling rate above Nyquist rate, Case 2) sampling rate below Nyquist rate
 +
*Topic 6: Z-transform: definition, example (computation of a z-transform using geometric series)
 +
*Topic 7: How to compute an inverse z-transform using power series expansion (give at least one example)
 +
*Topic 8: Nyquist Theorem, with proof and example
 +
*Topic 9 Frequency domain view of the relationship between a signal and a sampling of that signal
 +
*Topic 10: Frequency domain view of downsampling
 +
*Topic 11: Frequency domain view of upsampling
 
----
 
----
 +
== A bonus point opportunity  ==
  
 
+
Students in [[ECE438]] Fall 2014 have the opportunity to earn up to a 3% bonus by contributing a Rhea page on a subject related to digital signal processing. To pick a subject, simply write your name next to it. Your page will be graded based on content as well as interactions with other people (page views, comments/questions on the page, etc.). The number of links to other courses and subjects will also be taken into account: the more the merrier! Please do not simply copy the lecture notes and do not plagiarize. Read [[Rhea:Copyrights|Rhea's copyright policy]] before proceeding.  
== Your turn! A bonus point opportunity  ==
+
 
+
Students in ECE438 Fall 2013 have the opportunity to earn up to a 3% bonus by contributing a Rhea page on a subject related to digital signal processing. To pick a subject, simply write your name next to it. Your page will be graded based on content as well as interactions with other people (page views, comments/questions on the page, etc.). The number of links to other courses and subjects will also be taken into account: the more the merrier! Please do not simply copy the lecture notes and do not plagiarize. Read [[Rhea:Copyrights|Rhea's copyright policy]] before proceeding.  
+
  
  
Line 127: Line 125:
 
| 6  
 
| 6  
 
| Student blog  
 
| Student blog  
 +
| Name (s)
 +
|-
 +
| 7
 +
| Pick your own topic
 
| Name (s)
 
| Name (s)
 
|}
 
|}

Revision as of 08:54, 23 August 2014


ECE 438: Digital Signal Processing with Applications

Professor Boutin, Fall 2014


Message area: Welcome to ECE438


Course Information

  • Instructor: Prof. Mimi
  • Teaching Assistant: NAME
    • Email: login at purdue dot you know what
    • Office: MSEE 190
    • Office Hours: Wednesday 12:30 - 14:20
  • Teaching Assistant: NAME
    • Email: login at purdue dot you know what
    • Office: MSEE 374
    • Office Hours: Monday 3:30 - 5:30 pm
  • Schedule
  • Course Syllabus
  • Important Dates:
    • Test 1: Friday October 10, 2013
    • Test 2: Monday December 5, 2013
    • Final, TBA

Labs

Here


Resources


Lecture Blog

Lecture 1, 2, 3 ,4 ,5 ,6 ,7 ,8 ,9 ,10 ,11 ,12 ,13 ,14 ,15 ,16 ,17 ,18 ,19 ,20 ,21 ,22 ,23 ,24 ,25 ,26 ,27 ,28 ,29 ,30 ,31 ,32 ,33 ,34 ,35 ,36 ,37 ,38 ,39 ,40 ,41 ,42 ,43 ,44, final exam .


Homework


Slectures

Post a link to your slecture page below the relevant topic. If you want to reserve a particular topic, write your name/nickname below the topic. Please no more than 4 students per topic. To build your slecture page, you should use the following template. (Coming soon.)

  • Topic 1: Fourier transform as a function of frequency $ \omega $ versus Fourier transform as a function of frequency $ f $ (in hertz)
    • link to slecture page
    • link to slecture page
    • link to slecture page
  • Topic 2: Definition of the "rep" and "comb" operators
    • link to slecture page
    • link to slecture page
  • Topic 3: Fourier transform of "rep" and "comb"
  • Topic 4: Discrete-time Fourier transform (DTFT): definition, periodicity property, example (computation of DTFT of a complex exponential)
  • Topic 5: Discrete-time Fourier transform (DTFT) of a sampled cosine. Case 1) sampling rate above Nyquist rate, Case 2) sampling rate below Nyquist rate
  • Topic 6: Z-transform: definition, example (computation of a z-transform using geometric series)
  • Topic 7: How to compute an inverse z-transform using power series expansion (give at least one example)
  • Topic 8: Nyquist Theorem, with proof and example
  • Topic 9 Frequency domain view of the relationship between a signal and a sampling of that signal
  • Topic 10: Frequency domain view of downsampling
  • Topic 11: Frequency domain view of upsampling

A bonus point opportunity

Students in ECE438 Fall 2014 have the opportunity to earn up to a 3% bonus by contributing a Rhea page on a subject related to digital signal processing. To pick a subject, simply write your name next to it. Your page will be graded based on content as well as interactions with other people (page views, comments/questions on the page, etc.). The number of links to other courses and subjects will also be taken into account: the more the merrier! Please do not simply copy the lecture notes and do not plagiarize. Read Rhea's copyright policy before proceeding.


Topic Number Topic Description Student Name
1 Something related to CT or DT Fourier transform Name
2 Something related to Z-transform Name
3 Something related to discrete Fourier transform Name
4 Something related to CSFT Name
5 Something related to Quantization Name
6 Student blog Name (s)
7 Pick your own topic Name (s)

Back to ECE438

Alumni Liaison

Have a piece of advice for Purdue students? Share it through Rhea!

Alumni Liaison