Line 160: | Line 160: | ||
== References == | == References == | ||
+ | [1] [https://engineering.purdue.edu/~mboutin/ Mireille Boutin], "ECE662: Statistical Pattern Recognition and Decision Making Processes," Purdue University, Spring 2014.<br/>[2] http://www.csd.uwo.ca/~olga/Courses/CS434a_541a/Lecture6.pdf<br>[3] http://research.cs.tamu.edu/prism/lectures/pr/pr_l8.pdf<br><br><br> | ||
**You may include links to other [https://www.projectrhea.org/learning/about_Rhea.php Project Rhea] pages. | **You may include links to other [https://www.projectrhea.org/learning/about_Rhea.php Project Rhea] pages. |
Revision as of 13:07, 30 April 2014
K-Nearest Neighbors Density Estimation
A slecture by CIT student Raj Praveen Selvaraj
Partly based on the ECE662 Spring 2014 lecture material of Prof. Mireille Boutin.
Contents
Introduction
This slecture discusses about the K-Nearest Neighbors(k-NN) approach to estimate the density of a given distribution. The approach of K-Nearest Neighbors is very popular in signal and image processing for clustering and classification of patterns. It is an non-parametric density estimation technique which lets the region volume be a function of the training data. We will discuss the basic principle behind the k-NN approach to estimate density at a point x0 and then move on to building a classifier using the k-NN Density estimate.
For a background knowledge on Local Density estimation methods, check the slecture Introduction to local density estimation methods
K-Nearest Neighbor Density Estimation
The general formulation for density estimation states that, for N Observations x1,x2,x3,...,xn the density at a point x0 can be approximated by,
where V is the volume of some neighborhood around x0 and k denotes the number of observations that are contained within the neighborhood. The basic idea of k-NN is to extend the neighborhood, until the k nearest values are included where k ≥ 2. If we consider the neighborhood around x0 as a sphere, the volume of the sphere is given by,
where $ \Gamma (n) = (n - 1)! $ There are K samples within the sphere(including the boundaries) of radius h.This is illustrated in the below figure.
If xl is the kth closest sample point to x0 then,
We approximate the density ρ(x0) by,
where #s is the number of samples on the boundary of circle with radius hk
Most of the time this estimate is,
The Estimated density at x0 is the actual density x0
We will now prove the above claim that the estimated density is also the actual density at x0
The above claim is true only in cases where the window function $ \phi $ defines a region R with well defined boundaries.That is,
The random variable here is Vk(x0)
Let,u be a small band along the boundary of R given by,
Observation : $ u \ \epsilon \ [0,1] $
Let G be the event that "K-1 samples fall inside " $ R $
and let H be the event that "1 sample falls inside the small band along the boundary"
Then,
$ Prob(G, H) = Prob(G).Prob(H\mid G) $
$ Prob(G) = \binom{N}{K-1}u^{k-1}(1-u)^{N-K+1} $
$ Prob(H\mid G) = \binom{N-K+1}{1} \left ( \frac{\Delta u}{1-u} \right )\left ( 1 - \frac{\Delta u}{1-u} \right )^{N-K} $
where $ {\Delta u} $ is given by,
$ {\Delta u} = \int \rho(x)dx $
$ Prob(G,H) = \binom{N}{K-1} \binom{N-K+1}{1} \left ( \frac{\Delta u}{1-u} \right ) u^{K-1}\left ( 1 - \frac{\Delta u}{1-u} \right )^{N-K}(1-u)^{N-K+1} $
$ Prob(G,H) = \frac{N!}{1!(N-K+1)!}.\frac{N-K+1}{1!(N-K)!} $
$ Prob(G,H) = \frac{N!}{(k-1)!(N-K)!}.\Delta u(1 - u)^{N-K}u^{K-1}\left ( 1- \frac{\Delta u}{1-u}\right )^{N-K} $
$ \left ( 1- \frac{\Delta u}{1-u}\right )^{N-K} = 1, when \ \Delta u \ is \ very \ small $
$ Prob(G,H)\cong \Delta u. \frac{N!}{(k-1)!(N-K)!}.u^{k-1}(1-u)^{N-K} $
The Expected value of the density at x0 by k-NN is given by,
$ E(\bar{\rho }(x_{0})) = E(\frac{K-1}{N.V_{K}(x_{0})}) $
recall that,
$ u \cong \rho (x_{0}).V_{K}(x_{0}) $
$ \Rightarrow V_{K}(x_{0}) = \frac{u}{\rho (x_{0})} $
$ E(\bar{\rho }(x_{0})) = E\left ( \frac{K-1}{N.u}.\rho (x_{0}) \right ) $
$ E(\bar{\rho }(x_{0})) = \frac{K-1}{N}\rho (x_{0}) E\left ( \frac{1}{u}\right) $
$ E(\bar{\rho }(x_{0})) = \frac{K-1}{N}\rho (x_{0}) \int_{0}^{1}\frac{1}{u}\rho_{u}du $
$ E(\bar{\rho }(x_{0})) = \frac{K-1}{N}\rho (x_{0}) \int_{0}^{1}\frac{1}{u}\frac{N!}{(K-1)!(N-K)!}u^{K-1}(1-u)^{N-K}du $
$ E(\bar{\rho }(x_{0})) = \frac{K-1}{N}\rho (x_{0}) \int_{0}^{1}\frac{1}{u}\frac{N(N-1)!}{(K-1)(K-Z)!(N-K)!}u^{K-Z}(1-u)^{N-K}du $
$ E(\bar{\rho }(x_{0})) = \frac{\rho (x_{0}).(N-1)!}{(K-Z)!}.\frac{1}{(N-K)!} \int_{0}^{1}u^{K-Z}(1-u)^{N-K}du $
Now, $ \int_{0}^{1}u^{K-Z}(1-u)^{N-K}du = \frac{\Gamma (k-1)\Gamma (N-K+1)}{\Gamma (N)} $ and recall $ \Gamma (n) = (n-1)! $. Substituting these in the above equation we get,
$ E(\bar{\rho }(x_{0})) = \rho(x_{0}) $as claimed.
How to classify data using k-NN Density Estimate
Having seen how the density at any given point x0 is estimated based on the value of k and the given observations x1,x2,x3,...,xn, let's discuss about using the k-NN density estimate for classification. </br>
Method 1:
Let x0 be a sample from Rn to be classified.
Given are samples xi1,xx2,..,xxn for i classes.
We now pick a "good" ki for each class and a window function, and we try to approximate the density at x0 for each class as discussed above.We then pick the class with the largest density at x0 based on,
If the priors of the classes are unknown, we use ROC curves to estimate the priors.
For detailed information on ROC curves check the slecture ROC Curves
Method 2: </br>
Given are samples xi1,xx2,..,xxn from a Gaussian Mixture. We choose a good value for k and and a window function,
We then approximate the density at x0 by,
where Vi is the volume of the smallest window that contains k samples and ki is the number of samples among these k that belongs to class i.
We pick a class i0 such that,
On applying Bayes Rule, the above equation becomes,
If we assume that the priors of the classes are equal then,
So classification using this method can also be thought of as assigning a class based on the majority vote of the k-Nearest Neighbors at any point x0
Conclusion
K-NN is a simple and intuitive algorithm that can be applied to any kind of distribution. It gives a very good classification rate when the number of samples is large enough. But choosing the best "k" for the classifier may be difficult. The time and space complexity of the algorithm is very high, and we need to make several optimizations for efficiently running the algorithm.
Neverthless, it's one among the most popular techniques used for classification.
References
[1] Mireille Boutin, "ECE662: Statistical Pattern Recognition and Decision Making Processes," Purdue University, Spring 2014.
[2] http://www.csd.uwo.ca/~olga/Courses/CS434a_541a/Lecture6.pdf
[3] http://research.cs.tamu.edu/prism/lectures/pr/pr_l8.pdf
- You may include links to other Project Rhea pages.
Questions and comments
If you have any questions, comments, etc. please post them on this page.