Line 1: | Line 1: | ||
− | =QE2012_AC-3_ECE580-5= | + | = QE2012_AC-3_ECE580-5 = |
− | :[[ | + | :[[QE2012 AC-3 ECE580-1|Part 1]],[[QE2012 AC-3 ECE580-2|2]],[[QE2012 AC-3 ECE580-3|3]],[[QE2012 AC-3 ECE580-4|4]],[[QE2012 AC-3 ECE580-5|5]] |
Solution: | Solution: | ||
Standard Form: | Standard Form: | ||
− | + | <span class="texhtml">''Minimize''</span>''' <math>-x_1^2 + 2x_2</math>''' | |
− | + | <span class="texhtml">''Su''</span>''' <math>g_1(x) = x_1^2+x_2^2 - 1 \le 0</math>''' | |
− | + | <math>g_2(x) = -x_2 \le 0</math> | |
The KKT Condition. | The KKT Condition. | ||
− | + | <math>1. \mu _1, \mu _2 \ge 0</math> | |
− | + | <span class="texhtml">2. − 2''x''<sub>1</sub> + 2''x''<sub>1</sub>μ<sub>1</sub> = 0</span> | |
− | + | <span class="texhtml">2.2 + 2''x''<sub>2</sub>μ<sub>1</sub> − μ<sub>2</sub> = 0</span> | |
− | + | <math>3. (x_1^2+x_2^2-1)\mu_1 - x_2\mu _2 = 0</math> | |
− | + | <math>4. g_1(x),g_2(x) \le 0</math> | |
<br> | <br> | ||
Case 1: | Case 1: | ||
− | + | <span class="texhtml">''If</span>'' <span class="texhtml">μ<sub>1</sub> = 0</span> and <span class="texhtml">μ<sub>2</sub> = 0,</span>'' | |
− | + | <span class="texhtml">then''', 2 = 0'''</span>''' which is impossible.''' | |
− | + | ||
− | + | Case 2: | |
− | + | <span class="texhtml">''If</span>'' <span class="texhtml">μ<sub>1</sub> = 0</span> and <math>\mu_2 \not= 0,</math>'' | |
− | + | <span class="texhtml">''then''', μ<sub>2</sub> = 2,'''''<b>x''<sub>1</sub> = 0,''x''<sub>2</sub> = 0.''</b></span>'''''.''''' | |
Case 3: | Case 3: | ||
− | + | <span class="texhtml">''If</span>'' <math>\mu_1 \not= 0</math> and <span class="texhtml">μ<sub>2</sub> = 0,</span>'' | |
− | + | <math>then, x_1^2 + x_2^2 = 1 </math> | |
− | + | <math>if x1 \not= 0, then \mu_1 = 1, x_2 = -1 </math>which is impossible. | |
− | + | <span class="texhtml">''if ''x<sub>1</sub> = 0, ''then x''<sub>2</sub> = 1,μ<sub>1</sub> = − 1 </span>which is impossible. | |
Case 4: | Case 4: | ||
− | + | <span class="texhtml">''If</span>'' <math>\mu_1 \not= 0</math> and <math>\mu_2 \not= 0,</math>'' | |
− | + | <math>then, x_2 = 0, x_1^2 + x_2^2 = 1. So, x_1 = 1, \mu_1 = 1, \mu_2 = 2. </math>. | |
Therefore, there are two points that satisfy KKT condition. | Therefore, there are two points that satisfy KKT condition. | ||
− | + | <math>\begin{bmatrix} | |
\mu_1 ^{\ast}= 0 \\ \mu_2 ^{\ast}= 2 \\ x_1^{\ast}= 0 \\x_2^{\ast}= 0 | \mu_1 ^{\ast}= 0 \\ \mu_2 ^{\ast}= 2 \\ x_1^{\ast}= 0 \\x_2^{\ast}= 0 | ||
\end{bmatrix}and \begin{bmatrix} | \end{bmatrix}and \begin{bmatrix} | ||
Line 45: | Line 45: | ||
\end{bmatrix} </math> | \end{bmatrix} </math> | ||
− | Solution 2: | + | Solution 2: |
+ | |||
+ | The standard form of the optimizing problem is <math>\text{minimize } -x_1^2 + 2x_2</math> | ||
− | + | <math>\text{subject to } g_1(x)=x_1^2+x_2^2-1 \le 0 \text { and } g_2(x)=-x_2 \le 0</math> | |
− | | + | |
− | <math>\text{ | + | |
− | + | The KKT Condition. | |
− | |||
<math>1. \mu _1, \mu _2 \ge 0</math> | <math>1. \mu _1, \mu _2 \ge 0</math> | ||
− | + | <math>2.\begin{bmatrix} | |
-2x_1+2\mu_1 x_1 \\ 2+2\mu_1 x_2-\mu_2 | -2x_1+2\mu_1 x_1 \\ 2+2\mu_1 x_2-\mu_2 | ||
\end{bmatrix}=0</math> | \end{bmatrix}=0</math> | ||
− | + | <math>3. (x_1^2+x_2^2-1)\mu_1 - x_2\mu _2 = 0</math> | |
− | + | <math>4. g_1(x),g_2(x) \le 0</math> | |
− | <math>\text {Case 1: } \mu_1=\mu_2=0 \text{, which implies } 2=0 \Rightarrow \text{ Impossible} </math> | + | <math>\text {Case 1: } \mu_1=\mu_2=0 \text{, which implies } 2=0 \Rightarrow \text{ Impossible} </math> |
<math>\text {Case 2: } \mu_1 \neq 0, \mu_2=0 \Rightarrow | <math>\text {Case 2: } \mu_1 \neq 0, \mu_2=0 \Rightarrow | ||
Line 84: | Line 83: | ||
\text{ Impossible } | \text{ Impossible } | ||
− | </math> | + | </math> |
− | + | ||
+ | <br> | ||
<math>\text {Case 3: } \mu_1 = 0, \mu_2 \neq 0 \Rightarrow | <math>\text {Case 3: } \mu_1 = 0, \mu_2 \neq 0 \Rightarrow | ||
Line 104: | Line 103: | ||
\end{matrix}\right. | \end{matrix}\right. | ||
− | </math> | + | </math> |
<math>\text {Case 4: } \mu_1 \neq 0, \mu_2 \neq 0 \Rightarrow | <math>\text {Case 4: } \mu_1 \neq 0, \mu_2 \neq 0 \Rightarrow | ||
Line 121: | Line 120: | ||
\end{matrix}\right. | \end{matrix}\right. | ||
− | </math> | + | </math> |
− | <font color="#0000FF "><span style="font-size: 19px;"> | + | <font color="#0000FF"><span style="font-size: 19px;"> |
It's a lot more easier as the student notice that ignoring the constraint | It's a lot more easier as the student notice that ignoring the constraint | ||
<math>\color{blue} | <math>\color{blue} | ||
x_1>0 | x_1>0 | ||
</math> | </math> | ||
− | doesn't have any effect on the optimizing problem.This will save the time of discussing 4 more cases. But the student should have explain why this is true. </span></font> | + | doesn't have any effect on the optimizing problem.This will save the time of discussing 4 more cases. But the student should have explain why this is true. </span></font> |
− | <font color="#0000FF "><span style="font-size: 19px;"> | + | <font color="#0000FF"><span style="font-size: 19px;"> |
Each coefficient <math>\color{blue}\mu </math> can be either 0 or not. When solving the equations, a systematic way would be to discuss all cases. | Each coefficient <math>\color{blue}\mu </math> can be either 0 or not. When solving the equations, a systematic way would be to discuss all cases. | ||
<math>\color{blue} | <math>\color{blue} | ||
</math> | </math> | ||
− | </span></font> | + | </span></font> |
− | + | <br> Solution: | |
− | Solution: | + | |
Apply SOSC to the first point. | Apply SOSC to the first point. | ||
− | + | <math>\nabla g_2(x)^t y = 0</math> | |
− | + | <math>\begin{bmatrix} | |
0 & -1 | 0 & -1 | ||
\end{bmatrix} y = 0</math> | \end{bmatrix} y = 0</math> | ||
− | + | <math>y = \begin{bmatrix} | |
a \\ 0 | a \\ 0 | ||
\end{bmatrix}, a\not= 0</math> | \end{bmatrix}, a\not= 0</math> | ||
Line 152: | Line 150: | ||
-2 & 0 \\ 0 & 0 | -2 & 0 \\ 0 & 0 | ||
\end{bmatrix} </math> | \end{bmatrix} </math> | ||
− | + | <span class="texhtml">''Check ''</span><span class="texhtml">''y''<sup>''t''</sup>''L''(''x'',μ)''y''</span> | |
− | + | <math>\begin{bmatrix} | |
a & 0 | a & 0 | ||
\end{bmatrix}\begin{bmatrix} | \end{bmatrix}\begin{bmatrix} | ||
Line 164: | Line 162: | ||
Apply SOSC to the second point. | Apply SOSC to the second point. | ||
− | + | <math>\nabla g_1(x)^t y = 0, </math> | |
<math>\begin{bmatrix} | <math>\begin{bmatrix} | ||
2x_1 & 2x_2 | 2x_1 & 2x_2 | ||
\end{bmatrix} y = 0</math> | \end{bmatrix} y = 0</math> | ||
− | + | <math>y = \begin{bmatrix} | |
0 \\ a | 0 \\ a | ||
\end{bmatrix} where a\not= 0</math> | \end{bmatrix} where a\not= 0</math> | ||
Line 180: | Line 178: | ||
0 & 0 \\ 0 & 2 | 0 & 0 \\ 0 & 2 | ||
\end{bmatrix} </math> | \end{bmatrix} </math> | ||
− | + | <span class="texhtml">''Check ''</span><span class="texhtml">''y''<sup>''t''</sup>''L''(''x'',μ)''y''</span> | |
− | + | <math>\begin{bmatrix} | |
0 & a | 0 & a | ||
\end{bmatrix}\begin{bmatrix} | \end{bmatrix}\begin{bmatrix} | ||
Line 188: | Line 186: | ||
0 \\ a | 0 \\ a | ||
\end{bmatrix} = 2a^2 \gneq 0</math> that implies | \end{bmatrix} = 2a^2 \gneq 0</math> that implies | ||
− | + | <math>\begin{bmatrix} | |
x^{\ast} = 1\\ x^{\ast} = 0 | x^{\ast} = 1\\ x^{\ast} = 0 | ||
\end{bmatrix}</math> is the minimized point. | \end{bmatrix}</math> is the minimized point. | ||
− | Solution 2: | + | Solution 2: |
<math>\text{For } \left\{\begin{matrix} | <math>\text{For } \left\{\begin{matrix} | ||
Line 202: | Line 200: | ||
\end{matrix}\right. \text{, let } \nabla g_2(x)^T y=0, \text{We get } y=\begin{bmatrix} | \end{matrix}\right. \text{, let } \nabla g_2(x)^T y=0, \text{We get } y=\begin{bmatrix} | ||
a\\ 0 | a\\ 0 | ||
− | \end{bmatrix} \text{, where } y \text { are all the points on the tangent plane}</math> | + | \end{bmatrix} \text{, where } y \text { are all the points on the tangent plane}</math> |
<math> | <math> | ||
Line 208: | Line 206: | ||
-2 & 0\\ 0 & 0 | -2 & 0\\ 0 & 0 | ||
\end{bmatrix} | \end{bmatrix} | ||
− | </math> | + | </math> |
<math> | <math> | ||
y^T L(x,\mu)y=-2a^2 \le 0 \Rightarrow | y^T L(x,\mu)y=-2a^2 \le 0 \Rightarrow | ||
− | </math> | + | </math> |
− | < | + | <span class="texhtml">SOSC is not satisfied.</span> |
− | + | ||
− | </ | + | |
<math>\text{For } \left\{\begin{matrix} | <math>\text{For } \left\{\begin{matrix} | ||
Line 226: | Line 222: | ||
\end{matrix}\right. \text{, let } \nabla g_2(x)^T y=0, \text{We get } y=\begin{bmatrix} | \end{matrix}\right. \text{, let } \nabla g_2(x)^T y=0, \text{We get } y=\begin{bmatrix} | ||
0\\ a | 0\\ a | ||
− | \end{bmatrix} \text{, where } y \text { are all the points on the tangent plane}</math> | + | \end{bmatrix} \text{, where } y \text { are all the points on the tangent plane}</math> |
<math> | <math> | ||
Line 232: | Line 228: | ||
0 & 0\\ 0 & 2 | 0 & 0\\ 0 & 2 | ||
\end{bmatrix} | \end{bmatrix} | ||
− | </math> | + | </math> |
<math> | <math> | ||
y^T L(x,\mu)y=2a^2 \geq 0 \Rightarrow \text{It satisfies SOSC} | y^T L(x,\mu)y=2a^2 \geq 0 \Rightarrow \text{It satisfies SOSC} | ||
− | </math> | + | </math> |
<math> | <math> | ||
Line 244: | Line 240: | ||
\end{bmatrix} | \end{bmatrix} | ||
\text{is the minimum point.} | \text{is the minimum point.} | ||
− | </math> | + | </math> |
− | <font color="#0000FF "><span style="font-size: 19px;"> | + | <font color="#0000FF"><span style="font-size: 19px;"> |
When checking the SOSC condition, we need to find out the tangent plane. Only the subject function with a non-zero | When checking the SOSC condition, we need to find out the tangent plane. Only the subject function with a non-zero | ||
<math>\color{blue} | <math>\color{blue} | ||
Line 252: | Line 248: | ||
</math> | </math> | ||
is used to find out the tangent plane. | is used to find out the tangent plane. | ||
− | </span></font> | + | </span></font> |
---- | ---- | ||
+ | |||
---- | ---- | ||
+ | |||
<font face="serif"></font><math>\color{blue}\text{Related Problem: }</math> | <font face="serif"></font><math>\color{blue}\text{Related Problem: }</math> | ||
− | Solve the following problem:''' | + | Solve the following problem: |
+ | |||
+ | <span class="texhtml">''Minimize''</span>''' <span class="texhtml">''x''<sub>1</sub>''x''<sub>2</sub></span>''' | ||
+ | <span class="texhtml">''Subject to''</span>''' <math>x_1+x_2 \ge 2</math>''' | ||
+ | <math> x_2 \ge x_1 </math> | ||
+ | |||
+ | |||
+ | Find the points that satisfy the KKT condition and check whether it satisfies SOSC . | ||
+ | |||
+ | '''Solution''' The standard form of the optimizing problem is | ||
− | + | Minimize <span class="texhtml">''x''<sub>1</sub>''x''<sub>2</sub></span> | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | <math>\text{subject to } g_1(x)=-x_1-x_2+2 \le 0 \text { and } g_2(x)=x_1-x_2 \le 0</math> | |
− | + | ||
− | + | ||
− | + | The KKT Condition. | |
− | |||
<math>1. \mu _1, \mu _2 \ge 0</math> | <math>1. \mu _1, \mu _2 \ge 0</math> | ||
− | + | <math>2.\begin{bmatrix} | |
x_2-\mu_1+\mu_2 \\ x_1-\mu_1-\mu_2 | x_2-\mu_1+\mu_2 \\ x_1-\mu_1-\mu_2 | ||
\end{bmatrix}=0</math> | \end{bmatrix}=0</math> | ||
− | + | <span class="texhtml">3.( − ''x''<sub>1</sub> − ''x''<sub>2</sub> + 2)μ<sub>1</sub> + (''x''<sub>1</sub> − ''x''<sub>2</sub>)μ<sub>2</sub> = 0</span> | |
− | + | <math>4. g_1(x),g_2(x) \le 0</math> | |
− | Similar to the previous problem, we need to discuss the four possible cases of < | + | Similar to the previous problem, we need to discuss the four possible cases of <span class="texhtml">μ<sub>1</sub>,μ<sub>2</sub></span> |
It turns out that there is only one point that satisfy all conditions. | It turns out that there is only one point that satisfy all conditions. | ||
Line 291: | Line 291: | ||
x_2=1 | x_2=1 | ||
\end{matrix}\right. | \end{matrix}\right. | ||
− | </math> | + | </math> |
− | Now, we need to check whether SOSC is satisfied. | + | Now, we need to check whether SOSC is satisfied. |
<math> | <math> | ||
Line 299: | Line 299: | ||
0 & 1\\ 1 & 0 | 0 & 1\\ 1 & 0 | ||
\end{bmatrix} | \end{bmatrix} | ||
− | </math> | + | </math> |
<math> | <math> | ||
Line 305: | Line 305: | ||
-a\\ a | -a\\ a | ||
\end{bmatrix} \text{, where } y \text { are all the points on the tangent plane} | \end{bmatrix} \text{, where } y \text { are all the points on the tangent plane} | ||
− | </math> | + | </math> |
<math> | <math> | ||
y^T L(x,\mu)y=-2a^2 \geq 0 \Rightarrow | y^T L(x,\mu)y=-2a^2 \geq 0 \Rightarrow | ||
− | </math> | + | </math> |
− | < | + | <span class="texhtml">SOSC is not satisfied.</span> |
− | + | ||
− | </ | + | |
<math> | <math> | ||
Line 321: | Line 319: | ||
\end{bmatrix} | \end{bmatrix} | ||
\text{is not the minimum point.} | \text{is not the minimum point.} | ||
− | </math> | + | </math> |
− | [[ QE2012 AC-3 ECE580|Back to QE2012 AC-3 ECE580]] | + | [[QE2012 AC-3 ECE580|Back to QE2012 AC-3 ECE580]] |
Revision as of 19:33, 26 January 2013
QE2012_AC-3_ECE580-5
Solution:
Standard Form: Minimize $ -x_1^2 + 2x_2 $ Su $ g_1(x) = x_1^2+x_2^2 - 1 \le 0 $ $ g_2(x) = -x_2 \le 0 $
The KKT Condition. $ 1. \mu _1, \mu _2 \ge 0 $ 2. − 2x1 + 2x1μ1 = 0 2.2 + 2x2μ1 − μ2 = 0 $ 3. (x_1^2+x_2^2-1)\mu_1 - x_2\mu _2 = 0 $ $ 4. g_1(x),g_2(x) \le 0 $
Case 1: If μ1 = 0 and μ2 = 0, then, 2 = 0 which is impossible. Case 2: If μ1 = 0 and $ \mu_2 \not= 0, $ then, μ2 = 2,x1 = 0,x2 = 0..
Case 3: If $ \mu_1 \not= 0 $ and μ2 = 0, $ then, x_1^2 + x_2^2 = 1 $ $ if x1 \not= 0, then \mu_1 = 1, x_2 = -1 $which is impossible. if x1 = 0, then x2 = 1,μ1 = − 1 which is impossible.
Case 4: If $ \mu_1 \not= 0 $ and $ \mu_2 \not= 0, $ $ then, x_2 = 0, x_1^2 + x_2^2 = 1. So, x_1 = 1, \mu_1 = 1, \mu_2 = 2. $.
Therefore, there are two points that satisfy KKT condition.
$ \begin{bmatrix} \mu_1 ^{\ast}= 0 \\ \mu_2 ^{\ast}= 2 \\ x_1^{\ast}= 0 \\x_2^{\ast}= 0 \end{bmatrix}and \begin{bmatrix} \mu_1 ^{\ast}= 1 \\ \mu_2 ^{\ast}= 2 \\ x_1^{\ast}= 1 \\x_2^{\ast}= 0 \end{bmatrix} $
Solution 2:
The standard form of the optimizing problem is $ \text{minimize } -x_1^2 + 2x_2 $
$ \text{subject to } g_1(x)=x_1^2+x_2^2-1 \le 0 \text { and } g_2(x)=-x_2 \le 0 $
The KKT Condition.
$ 1. \mu _1, \mu _2 \ge 0 $ $ 2.\begin{bmatrix} -2x_1+2\mu_1 x_1 \\ 2+2\mu_1 x_2-\mu_2 \end{bmatrix}=0 $ $ 3. (x_1^2+x_2^2-1)\mu_1 - x_2\mu _2 = 0 $ $ 4. g_1(x),g_2(x) \le 0 $
$ \text {Case 1: } \mu_1=\mu_2=0 \text{, which implies } 2=0 \Rightarrow \text{ Impossible} $
$ \text {Case 2: } \mu_1 \neq 0, \mu_2=0 \Rightarrow \left\{\begin{matrix} x_1^2+x_2^2-1=0\\ -2x_1+2\mu_1x_1=0\\ 2+2\mu_1 x_1=0 \end{matrix}\right. \Rightarrow \left\{\begin{matrix} \mu_1=1\\ \mu_2=0\\ x_1=0\\ x_2=-1 \end{matrix}\right. \Rightarrow x_2<0, \text{ Impossible } $
$ \text {Case 3: } \mu_1 = 0, \mu_2 \neq 0 \Rightarrow \left\{\begin{matrix} -x_2\mu_2=0\\ -2x_1=0\\ 2-\mu_2=0 \end{matrix}\right. \Rightarrow \left\{\begin{matrix} \mu_1=0\\ \mu_2=2\\ x_1=0\\ x_2=0 \end{matrix}\right. $
$ \text {Case 4: } \mu_1 \neq 0, \mu_2 \neq 0 \Rightarrow \left\{\begin{matrix} x_1^2+x_2^2-1=0\\ x_2=0\\ \end{matrix}\right. \Rightarrow \left\{\begin{matrix} \mu_1=1\\ \mu_2=2\\ x_1=1\\ x_2=0 \end{matrix}\right. $
It's a lot more easier as the student notice that ignoring the constraint $ \color{blue} x_1>0 $ doesn't have any effect on the optimizing problem.This will save the time of discussing 4 more cases. But the student should have explain why this is true.
Each coefficient $ \color{blue}\mu $ can be either 0 or not. When solving the equations, a systematic way would be to discuss all cases. $ \color{blue} $
Solution:
Apply SOSC to the first point. $ \nabla g_2(x)^t y = 0 $ $ \begin{bmatrix} 0 & -1 \end{bmatrix} y = 0 $ $ y = \begin{bmatrix} a \\ 0 \end{bmatrix}, a\not= 0 $
$ L(x,\mu) = F(x) + \mu_2 G_2(x) =\begin{bmatrix} -2 & 0 \\ 0 & 0 \end{bmatrix} $ Check ytL(x,μ)y $ \begin{bmatrix} a & 0 \end{bmatrix}\begin{bmatrix} -2 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} a \\ 0 \end{bmatrix} = -2a^2 \lneq 0 $ which means SOSC fails.
Apply SOSC to the second point.
$ \nabla g_1(x)^t y = 0, $
$ \begin{bmatrix} 2x_1 & 2x_2 \end{bmatrix} y = 0 $ $ y = \begin{bmatrix} 0 \\ a \end{bmatrix} where a\not= 0 $
$ L(x,\mu) = F(x) + \mu_1 G_1(x) + \mu_2 G_2(x) =\begin{bmatrix} -2 & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 2 \end{bmatrix} $ Check ytL(x,μ)y $ \begin{bmatrix} 0 & a \end{bmatrix}\begin{bmatrix} 0 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 0 \\ a \end{bmatrix} = 2a^2 \gneq 0 $ that implies $ \begin{bmatrix} x^{\ast} = 1\\ x^{\ast} = 0 \end{bmatrix} $ is the minimized point.
Solution 2:
$ \text{For } \left\{\begin{matrix} \mu_1=0\\ \mu_2=2\\ x_1=0\\ x_2=0 \end{matrix}\right. \text{, let } \nabla g_2(x)^T y=0, \text{We get } y=\begin{bmatrix} a\\ 0 \end{bmatrix} \text{, where } y \text { are all the points on the tangent plane} $
$ L(x,\mu)=F(x,\mu)+\mu_2 G_2 (x)=\begin{bmatrix} -2 & 0\\ 0 & 0 \end{bmatrix} $
$ y^T L(x,\mu)y=-2a^2 \le 0 \Rightarrow $
SOSC is not satisfied.
$ \text{For } \left\{\begin{matrix} \mu_1=1\\ \mu_2=2\\ x_1=1\\ x_2=0 \end{matrix}\right. \text{, let } \nabla g_2(x)^T y=0, \text{We get } y=\begin{bmatrix} 0\\ a \end{bmatrix} \text{, where } y \text { are all the points on the tangent plane} $
$ L(x,\mu)=F(x,\mu)+\mu_2 G_2 (x)=\begin{bmatrix} 0 & 0\\ 0 & 2 \end{bmatrix} $
$ y^T L(x,\mu)y=2a^2 \geq 0 \Rightarrow \text{It satisfies SOSC} $
$ \text{So, } \begin{bmatrix} x^{\ast} = 1\\ x^{\ast} = 0 \end{bmatrix} \text{is the minimum point.} $
When checking the SOSC condition, we need to find out the tangent plane. Only the subject function with a non-zero $ \color{blue} \mu $ is used to find out the tangent plane.
$ \color{blue}\text{Related Problem: } $
Solve the following problem:
Minimize x1x2 Subject to $ x_1+x_2 \ge 2 $ $ x_2 \ge x_1 $
Find the points that satisfy the KKT condition and check whether it satisfies SOSC .
Solution The standard form of the optimizing problem is
Minimize x1x2
$ \text{subject to } g_1(x)=-x_1-x_2+2 \le 0 \text { and } g_2(x)=x_1-x_2 \le 0 $
The KKT Condition.
$ 1. \mu _1, \mu _2 \ge 0 $ $ 2.\begin{bmatrix} x_2-\mu_1+\mu_2 \\ x_1-\mu_1-\mu_2 \end{bmatrix}=0 $ 3.( − x1 − x2 + 2)μ1 + (x1 − x2)μ2 = 0 $ 4. g_1(x),g_2(x) \le 0 $
Similar to the previous problem, we need to discuss the four possible cases of μ1,μ2
It turns out that there is only one point that satisfy all conditions.
$ \left\{\begin{matrix} \mu_1=1\\ \mu_2=0\\ x_1=1\\ x_2=1 \end{matrix}\right. $
Now, we need to check whether SOSC is satisfied.
$ L(x,\mu)=F(x,\mu)+\mu_1 G_1 (x)=\begin{bmatrix} 0 & 1\\ 1 & 0 \end{bmatrix} $
$ y=\begin{bmatrix} -a\\ a \end{bmatrix} \text{, where } y \text { are all the points on the tangent plane} $
$ y^T L(x,\mu)y=-2a^2 \geq 0 \Rightarrow $
SOSC is not satisfied.
$ \text{So, } \begin{bmatrix} x_{1} = 1\\ x_{2} = 1 \end{bmatrix} \text{is not the minimum point.} $