Line 16: Line 16:
  
 
{| class="wikitable" border="1" style="text-align: center; width: 800px;"
 
{| class="wikitable" border="1" style="text-align: center; width: 800px;"
|+ Commands helpful while doing the practice problems
+
|+ Commands helpful while doing the practice problems  
 
|- style="height: 40px;"
 
|- style="height: 40px;"
 
! scope="col" | Description  
 
! scope="col" | Description  
Line 30: Line 30:
 
| \sum_{k=0}^\infty x[n]\delta [n-k]
 
| \sum_{k=0}^\infty x[n]\delta [n-k]
 
|- style="height: 30px;"
 
|- style="height: 30px;"
| ''Fractions''
+
| ''Fractions''  
| <math>y=x^2/2 +\frac{x}{\phi}</math>
+
| <math>y=x^2/2 +\frac{x}{\phi}</math>  
|y=x^2/2 +\frac{x}{\phi}
+
| y=x^2/2 +\frac{x}{\phi}
 
|- style="height: 30px;"
 
|- style="height: 30px;"
|''Integrals''
+
| ''Integrals''  
|<math>\int\limits_{\alpha}^{\beta}e^\tau\ d\tau</math>
+
| <math>\int\limits_{\alpha}^{\beta}e^\tau\ d\tau</math>  
|\int\limits_{\alpha}^{\beta}e^\tau\ d\tau
+
| \int\limits_{\alpha}^{\beta}e^\tau\ d\tau
 
|- style="height: 30px;"
 
|- style="height: 30px;"
|''Braces and Script Characters''
+
| ''Braces and Script Characters''  
|<math>\mathcal{F }\left \{ rect(t) \right \}, \mathcal{X}(\omega)</math>
+
| <math>\mathcal{F }\left \{ rect(t) \right \}, \mathcal{X}(\omega)</math>  
|\mathcal{F }\left \{ rect(t) \right \}, \mathcal{X}(\omega)
+
| \mathcal{F }\left \{ rect(t) \right \}, \mathcal{X}(\omega)
 
+
 
|}
 
|}
  
 
+
<br>
  
 
{| class="wikitable" border="1" style="text-align: center; width: 800px;"
 
{| class="wikitable" border="1" style="text-align: center; width: 800px;"
|+ How to Format a Long Equation
+
|+ How to Format a Long Equation  
! scope="col" | What it looks like
+
|-
 +
! scope="col" | What it looks like  
 
! scope="col" | What you type
 
! scope="col" | What you type
 
|-
 
|-
|<math>\begin{align}
+
| <math>\begin{align}
f(x) &= \int\limits_{0}^{2\pi} sin^2(\theta) \ d\theta \\ &= \int\limits_{0}^{2\pi} \big(1-cos^2(\theta) \big)\ d\theta \\ &= \int\limits_{0}^{2\pi} \bigg( 1-\Big(\frac{1}{2} +\frac{1}{2} cos(2\theta)\Big) \bigg)\ d\theta \\ &= \int\limits_{0}^{2\pi} \frac{1}{2}\ d\theta -\frac{1}{2} \int\limits_{0}^{2\pi} cos(2\theta) \ d\theta \\ &= \pi \end{align}</math>
+
f(x) &= \int\limits_{0}^{2\pi} sin^2(\theta) \ d\theta \\ &= \int\limits_{0}^{2\pi} \big(1-cos^2(\theta) \big)\ d\theta \\ &= \int\limits_{0}^{2\pi} \bigg( 1-\Big(\frac{1}{2} +\frac{1}{2} cos(2\theta)\Big) \bigg)\ d\theta \\ &= \int\limits_{0}^{2\pi} \frac{1}{2}\ d\theta -\frac{1}{2} \int\limits_{0}^{2\pi} cos(2\theta) \ d\theta \\ &= \pi \end{align}</math>  
| <nowiki>\begin{align}  
+
| <nowiki>\begin{align} </nowiki> \\
f(x) &= \int\limits_{0}^{2\pi} sin^2(\theta) \ d\theta \\
+
<nowiki> f(x) &= \int\limits_{0}^{2\pi} sin^2(\theta) \ d\theta \\ </nowiki> <br>
&= \int\limits_{0}^{2\pi} \big(1-cos^2(\theta) \big)\ d\theta \\  
+
<nowiki>&= \int\limits_{0}^{2\pi} \big(1-cos^2(\theta) \big)\ d\theta \\ </nowiki> <br>
&= \int\limits_{0}^{2\pi} \bigg( 1-\Big(\frac{1}{2} +\frac{1}{2} cos(2\theta)\Big) \bigg)\ d\theta \\
+
<nowiki>&= \int\limits_{0}^{2\pi} \bigg( 1-\Big(\frac{1}{2}</nowiki> +<br> <nowiki>\frac{1}{2} cos(2\theta)\Big) \bigg)\ d\theta \\ </nowiki> <br>
&= \int\limits_{0}^{2\pi} \frac{1}{2}\ d\theta -\frac{1}{2} \int\limits_{0}^{2\pi} cos(2\theta) \ d\theta \\
+
<nowiki> &= \int\limits_{0}^{2\pi} \frac{1}{2}\ d\theta</nowiki> -<br> <nowiki>\frac{1}{2} \int\limits_{0}^{2\pi} cos(2\theta) \ d\theta \\ </nowiki> <br>
  &= \pi \end{align}</nowiki>
+
  <nowiki>&= \pi \end{align}</nowiki>
 
|}
 
|}

Revision as of 15:10, 2 September 2011

How to Enter Math in Rhea

This page shows many of the functions and symbols that you are likely to need while working on the practice problems. *hint hint


Basics of Rhea/Wiki Math

Math in Rhea is written using the Latex commands. To begin, you need use the math tags like: <math> formulas </math>.

Resources

You should know that there is a host of resources already to help you along. One great page on Rhea is How to type Math Equations. Another resource is Wikipedia's page on Functions, Symbols, and Special Characters.


Commands helpful while doing the practice problems
Description What it looks like What you type
Summations $ \sum_{n=-\infty}^\infty x[n]e^{-j2\pi f} $ \sum_{n=-\infty}^\infty x[n]e^{-j2\pi f}
Summations with Delta $ \sum_{k=0}^\infty x[n]\delta [n-k] $ \sum_{k=0}^\infty x[n]\delta [n-k]
Fractions $ y=x^2/2 +\frac{x}{\phi} $ y=x^2/2 +\frac{x}{\phi}
Integrals $ \int\limits_{\alpha}^{\beta}e^\tau\ d\tau $ \int\limits_{\alpha}^{\beta}e^\tau\ d\tau
Braces and Script Characters $ \mathcal{F }\left \{ rect(t) \right \}, \mathcal{X}(\omega) $ \mathcal{F }\left \{ rect(t) \right \}, \mathcal{X}(\omega)


How to Format a Long Equation
What it looks like What you type
$ \begin{align} f(x) &= \int\limits_{0}^{2\pi} sin^2(\theta) \ d\theta \\ &= \int\limits_{0}^{2\pi} \big(1-cos^2(\theta) \big)\ d\theta \\ &= \int\limits_{0}^{2\pi} \bigg( 1-\Big(\frac{1}{2} +\frac{1}{2} cos(2\theta)\Big) \bigg)\ d\theta \\ &= \int\limits_{0}^{2\pi} \frac{1}{2}\ d\theta -\frac{1}{2} \int\limits_{0}^{2\pi} cos(2\theta) \ d\theta \\ &= \pi \end{align} $ \begin{align} \\

f(x) &= \int\limits_{0}^{2\pi} sin^2(\theta) \ d\theta \\
&= \int\limits_{0}^{2\pi} \big(1-cos^2(\theta) \big)\ d\theta \\
&= \int\limits_{0}^{2\pi} \bigg( 1-\Big(\frac{1}{2} +
\frac{1}{2} cos(2\theta)\Big) \bigg)\ d\theta \\
&= \int\limits_{0}^{2\pi} \frac{1}{2}\ d\theta -
\frac{1}{2} \int\limits_{0}^{2\pi} cos(2\theta) \ d\theta \\

&= \pi \end{align}

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn