Line 15: | Line 15: | ||
<br> | <br> | ||
− | {| class="wikitable" border="1" style="text-align: center; width: | + | {| class="wikitable" border="1" style="text-align: center; width: 800px;" |
|+ Commands helpful while doing the practice problems | |+ Commands helpful while doing the practice problems | ||
|- style="height: 40px;" | |- style="height: 40px;" | ||
Line 41: | Line 41: | ||
|<math>\mathcal{F }\left \{ rect(t) \right \}, \mathcal{X}(\omega)</math> | |<math>\mathcal{F }\left \{ rect(t) \right \}, \mathcal{X}(\omega)</math> | ||
|\mathcal{F }\left \{ rect(t) \right \}, \mathcal{X}(\omega) | |\mathcal{F }\left \{ rect(t) \right \}, \mathcal{X}(\omega) | ||
+ | |- | ||
+ | |''Long Equations'' | ||
+ | |<math>\begin{align} | ||
+ | |||
+ | \int\limits_{0}^{2\pi} sin^2(\theta) \ d\theta &= \int\limits_{0}^{2\pi} \big(1-cos^2(\theta) \big)\ d\theta \\ | ||
+ | &= \int\limits_{0}^{2\pi} \bigg( 1-\Big(\frac{1}{2} +\frac{1}{2} cos(2\theta)\Big) \bigg)\ d\theta \\ | ||
+ | &= \int\limits_{0}^{2\pi} \frac{1}{2}\ d\theta -\frac{1}{2} \int\limits_{0}^{2\pi} cos(2\theta) \ d\theta \\ | ||
+ | &= \pi | ||
+ | \end{align} | ||
+ | </math> | ||
+ | |\begin{align} | ||
+ | \int\limits_{0}^{2\pi} sin^2(\theta) \ d\theta &= \int\limits_{0}^{2\pi} \big(1-cos^2(\theta) \big)\ d\theta \\ | ||
+ | &= \int\limits_{0}^{2\pi} \bigg( 1-\Big(\frac{1}{2} +\frac{1}{2} cos(2\theta)\Big) \bigg)\ d\theta \\ | ||
+ | &= \int\limits_{0}^{2\pi} \frac{1}{2}\ d\theta -\frac{1}{2} \int\limits_{0}^{2\pi} cos(2\theta) \ d\theta \\ | ||
+ | &= \pi | ||
+ | \end{align} | ||
|} | |} |
Revision as of 14:17, 2 September 2011
How to Enter Math in Rhea
This page shows many of the functions and symbols that you are likely to need while working on the practice problems. *hint hint
Basics of Rhea/Wiki Math
Math in Rhea is written using the Latex commands. To begin, you need use the math tags like: <math> formulas </math>.
Resources
You should know that there is a host of resources already to help you along. One great page on Rhea is How to type Math Equations. Another resource is Wikipedia's page on Functions, Symbols, and Special Characters.
Description | What it looks like | What you type |
---|---|---|
Summations | $ \sum_{n=-\infty}^\infty x[n]e^{-j2\pi f} $ | \sum_{n=-\infty}^\infty x[n]e^{-j2\pi f} |
Summations with Delta | $ \sum_{k=0}^\infty x[n]\delta [n-k] $ | \sum_{k=0}^\infty x[n]\delta [n-k] |
Fractions | $ y=x^2/2 +\frac{x}{\phi} $ | y=x^2/2 +\frac{x}{\phi} |
Integrals | $ \int\limits_{\alpha}^{\beta}e^\tau\ d\tau $ | \int\limits_{\alpha}^{\beta}e^\tau\ d\tau |
Braces and Script Characters | $ \mathcal{F }\left \{ rect(t) \right \}, \mathcal{X}(\omega) $ | \mathcal{F }\left \{ rect(t) \right \}, \mathcal{X}(\omega) |
Long Equations | $ \begin{align} \int\limits_{0}^{2\pi} sin^2(\theta) \ d\theta &= \int\limits_{0}^{2\pi} \big(1-cos^2(\theta) \big)\ d\theta \\ &= \int\limits_{0}^{2\pi} \bigg( 1-\Big(\frac{1}{2} +\frac{1}{2} cos(2\theta)\Big) \bigg)\ d\theta \\ &= \int\limits_{0}^{2\pi} \frac{1}{2}\ d\theta -\frac{1}{2} \int\limits_{0}^{2\pi} cos(2\theta) \ d\theta \\ &= \pi \end{align} $ | \begin{align}
\int\limits_{0}^{2\pi} sin^2(\theta) \ d\theta &= \int\limits_{0}^{2\pi} \big(1-cos^2(\theta) \big)\ d\theta \\ &= \int\limits_{0}^{2\pi} \bigg( 1-\Big(\frac{1}{2} +\frac{1}{2} cos(2\theta)\Big) \bigg)\ d\theta \\ &= \int\limits_{0}^{2\pi} \frac{1}{2}\ d\theta -\frac{1}{2} \int\limits_{0}^{2\pi} cos(2\theta) \ d\theta \\ &= \pi \end{align} |