(New page: ==Week11 Quiz Question 4 Solution== ----- <math> \begin{align} X_1(z)=\sum_{n=-\infty}^{\infty}x_1[n]z^{-n}&=\sum_{n=-\infty}^{\infty}(\frac{1}{2})^nu[n]z^{-n}+\sum_{n=-\infty}^{\infty}2^n...)
 
 
Line 17: Line 17:
 
<math>
 
<math>
 
\begin{align}
 
\begin{align}
X_2(z)=\sum_{n=-\infty}^{\infty}x_2[n]z^{-n}&=\sum_{n=-\infty}^{\infty}6(\frac{1}{2})^nu[n]z^{-n}-\sum_{n=-\infty}^{\infty}6(\frac{3}{2})^nu[n]z^{-n} \\
+
X_2(z)=\sum_{n=-\infty}^{\infty}x_2[n]z^{-n}&=\sum_{n=-\infty}^{\infty}6(\frac{1}{2})^nu[n]z^{-n}-\sum_{n=-\infty}^{\infty}6(\frac{3}{4})^nu[n]z^{-n} \\
&=\sum_{n=0}^{\infty}6(\frac{1}{2})^nz^{-n}-\sum_{n=0}^{\infty}6(\frac{3}{2})^nz^{-n} \\
+
&=\sum_{n=0}^{\infty}6(\frac{1}{2})^nz^{-n}-\sum_{n=0}^{\infty}6(\frac{3}{4})^nz^{-n} \\
&=\sum_{n=0}^{\infty}6(\frac{1}{2})^nz^{-n}-\sum_{n=0}^{\infty}6(\frac{3}{2})^nz^{-n} \\
+
&=\sum_{n=0}^{\infty}6(\frac{1}{2})^nz^{-n}-\sum_{n=0}^{\infty}6(\frac{3}{4})^nz^{-n} \\
&=\frac{6}{1-\frac{1}{2}z^{-1}}-\frac{6}{1-\frac{3}{2}z^{-1}}\text{ ,if }|z|>\frac{1}{2}\text{ and }|z|>\frac{3}{2} \\
+
&=\frac{6}{1-\frac{1}{2}z^{-1}}-\frac{6}{1-\frac{3}{4}z^{-1}}\text{ ,if }|z|>\frac{1}{2}\text{ and }|z|>\frac{3}{4} \\
&=\frac{-6z^{-1}}{(1-\frac{1}{2}z^{-1})(1-\frac{3}{2}z^{-1})}\text{ ,ROC: }|z|>\frac{3}{2}
+
&=\frac{-6z^{-1}}{(1-\frac{1}{2}z^{-1})(1-\frac{3}{4}z^{-1})}\text{ ,ROC: }|z|>\frac{3}{4}
 
\end{align}
 
\end{align}
 
</math>
 
</math>
  
This system is unstable because the ROC does not contain unit cycle.
+
This system is stable because the ROC contains unit cycle.
  
 
-----
 
-----

Latest revision as of 06:49, 22 November 2011

Week11 Quiz Question 4 Solution


$ \begin{align} X_1(z)=\sum_{n=-\infty}^{\infty}x_1[n]z^{-n}&=\sum_{n=-\infty}^{\infty}(\frac{1}{2})^nu[n]z^{-n}+\sum_{n=-\infty}^{\infty}2^nu[-n-1]z^{-n} \\ &=\sum_{n=0}^{\infty}(\frac{1}{2})^nz^{-n}+\sum_{n=-\infty}^{-1}2^nz^{-n} \\ &=\sum_{n=0}^{\infty}(\frac{1}{2})^nz^{-n}+\sum_{n=1}^{\infty}2^{-n}z^{n} \\ &=\sum_{n=0}^{\infty}(\frac{1}{2})^nz^{-n}+\sum_{n=0}^{\infty}2^{-n}z^{n}-1 \\ &=\frac{1}{1-\frac{1}{2}z^{-1}}+\frac{1}{1-\frac{z}{2}}-1\text{ ,if }|z|>\frac{1}{2}\text{ and }|z|<2 \\ &=\frac{\frac{3}{4}z^{-1}}{(1-\frac{1}{2}z^{-1})(z^{-1}-\frac{1}{2})}\text{ ,ROC: }\frac{1}{2}<|z|<2 \end{align} $

This system is stable because the ROC contains unit cycle.

$ \begin{align} X_2(z)=\sum_{n=-\infty}^{\infty}x_2[n]z^{-n}&=\sum_{n=-\infty}^{\infty}6(\frac{1}{2})^nu[n]z^{-n}-\sum_{n=-\infty}^{\infty}6(\frac{3}{4})^nu[n]z^{-n} \\ &=\sum_{n=0}^{\infty}6(\frac{1}{2})^nz^{-n}-\sum_{n=0}^{\infty}6(\frac{3}{4})^nz^{-n} \\ &=\sum_{n=0}^{\infty}6(\frac{1}{2})^nz^{-n}-\sum_{n=0}^{\infty}6(\frac{3}{4})^nz^{-n} \\ &=\frac{6}{1-\frac{1}{2}z^{-1}}-\frac{6}{1-\frac{3}{4}z^{-1}}\text{ ,if }|z|>\frac{1}{2}\text{ and }|z|>\frac{3}{4} \\ &=\frac{-6z^{-1}}{(1-\frac{1}{2}z^{-1})(1-\frac{3}{4}z^{-1})}\text{ ,ROC: }|z|>\frac{3}{4} \end{align} $

This system is stable because the ROC contains unit cycle.


Back to Quiz Pool

Back to Lab Wiki

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett