Line 17: Line 17:
 
a) Provide a closed-form expression for the 8-pt DFT of <math>h[n]</math>, denoted <math>H_8[k]</math>, as a function of <math>k</math>. Simplify as much as possible.
 
a) Provide a closed-form expression for the 8-pt DFT of <math>h[n]</math>, denoted <math>H_8[k]</math>, as a function of <math>k</math>. Simplify as much as possible.
  
b) Consider the sequence <math>x[n]</math> of length 8 below, equal to a sum of several finite-length sinewaves.
+
b) Consider the sequence <math>x[n]</math> of length 8 below,
:<math>x[n]=\text{cos}(\pi n)(u[n]-u[n-8])</math>
+
:<math>x[n]=\text{cos}(\pi n)(u[n]-u[n-8])\,\!</math>
 
<math>y_8[n]</math> is formed by computing <math>X_8[k]</math> as an 8-pt DFT of <math>x[n]</math>, <math>H_8[k]</math> as an 8-pt DFT of <math>h[n]</math>, and then <math>y_8[n]</math> as the 8-pt inverse DFT of <math>Y_8[k] = X_8[k]H_8[k]</math>.  
 
<math>y_8[n]</math> is formed by computing <math>X_8[k]</math> as an 8-pt DFT of <math>x[n]</math>, <math>H_8[k]</math> as an 8-pt DFT of <math>h[n]</math>, and then <math>y_8[n]</math> as the 8-pt inverse DFT of <math>Y_8[k] = X_8[k]H_8[k]</math>.  
  

Revision as of 10:56, 2 November 2010


  • Under construction --Zhao

Quiz Questions Pool for Week 11


Q1. Consider the two LTI systems, $ y[n]=T_1[x[n]] $ and $ y[n]=T_2[x[n]] $, with the following difference equations,

$ y[n]=T_1[x[n]]=x[n]-x[n-1]\,\! $
$ y[n]=T_2[x[n]]=\frac{1}{2}y[n-1]+x[n]\,\! $

Then, calculate the impulse response and difference equation of the combined system $ (T_1+T_2)[x[n]] $.


Q2. Consider a causal FIR filter of length M = 2 with impulse response

$ h[n]=\delta[n]-\delta[n-1]\,\! $

a) Provide a closed-form expression for the 8-pt DFT of $ h[n] $, denoted $ H_8[k] $, as a function of $ k $. Simplify as much as possible.

b) Consider the sequence $ x[n] $ of length 8 below,

$ x[n]=\text{cos}(\pi n)(u[n]-u[n-8])\,\! $

$ y_8[n] $ is formed by computing $ X_8[k] $ as an 8-pt DFT of $ x[n] $, $ H_8[k] $ as an 8-pt DFT of $ h[n] $, and then $ y_8[n] $ as the 8-pt inverse DFT of $ Y_8[k] = X_8[k]H_8[k] $.

Express the result $ y_8[n] $ as a weighted sum of finite-length sinewaves similar to how $ x[n] $ is written above.


Q3.


Q4.


Q5.


Back to ECE 438 Fall 2010 Lab Wiki Page

Back to ECE 438 Fall 2010

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang