(New page: Category:2010 Fall ECE 438 Boutin <span style="color:green"> Under construction </span> -Jaemin ---- == Quiz Questions Pool for Week 8 == ---- <math>\text{1.}</math> *...) |
|||
Line 6: | Line 6: | ||
== Quiz Questions Pool for Week 8 == | == Quiz Questions Pool for Week 8 == | ||
---- | ---- | ||
− | <math>\text{1.}</math> | + | Q1. Find the impulse response of the following LTI systems and draw their block diagram. |
+ | |||
+ | <math>{\color{White}ab}\text{a)}{\color{White}abc}y[n] = 0.6 y[n-1] + 0.4 x[n]</math> | ||
+ | |||
+ | <math>{\color{White}ab}\text{b)}{\color{White}abc}y[n] = y[n-1] + 0.25(x[n] - x[n-3])</math> | ||
+ | |||
* [[ECE438_Week8_Quiz_Q1sol|Solution]]. | * [[ECE438_Week8_Quiz_Q1sol|Solution]]. | ||
---- | ---- | ||
− | <math>\ | + | Q2. Suppose that the LTI filter <math>h_1</math> satifies the following difference equation between input <math>x[n]</math> and output <math>y[n]</math>. |
+ | |||
+ | <math> {\color{White}ab} y[n] = h_1[n]\;\ast\;x[n] = \frac{1}{4} y[n-1] + x[n] </math> | ||
+ | |||
+ | Then, find the inverse LTI filter (<math>h_2</math>) of <math>h_1</math>, which satisfies the following relationship for any discrete-time signal <math>x[n]</math>, | ||
+ | |||
+ | <math> {\color{White}ab} x[n] = h_2[n]\;\ast\;h_1[n]\;\ast\;x[n] </math> | ||
+ | |||
* [[ECE438_Week8_Quiz_Q2sol|Solution]]. | * [[ECE438_Week8_Quiz_Q2sol|Solution]]. | ||
---- | ---- | ||
− | <math>\text{ | + | <math>\text{Q3.}</math> |
* [[ECE438_Week8_Quiz_Q3sol|Solution]]. | * [[ECE438_Week8_Quiz_Q3sol|Solution]]. | ||
---- | ---- | ||
− | <math>\text{ | + | <math>\text{Q4.}</math> |
* [[ECE438_Week8_Quiz_Q4sol|Solution]]. | * [[ECE438_Week8_Quiz_Q4sol|Solution]]. | ||
---- | ---- | ||
− | <math>\text{ | + | <math>\text{Q5.}</math> |
* [[ECE438_Week8_Quiz_Q5sol|Solution]]. | * [[ECE438_Week8_Quiz_Q5sol|Solution]]. | ||
---- | ---- | ||
− | <math>\text{ | + | <math>\text{Q6.}</math> |
* [[ECE438_Week8_Quiz_Q6sol|Solution]]. | * [[ECE438_Week8_Quiz_Q6sol|Solution]]. | ||
---- | ---- |
Revision as of 10:49, 8 October 2010
Under construction -Jaemin
Quiz Questions Pool for Week 8
Q1. Find the impulse response of the following LTI systems and draw their block diagram.
$ {\color{White}ab}\text{a)}{\color{White}abc}y[n] = 0.6 y[n-1] + 0.4 x[n] $
$ {\color{White}ab}\text{b)}{\color{White}abc}y[n] = y[n-1] + 0.25(x[n] - x[n-3]) $
Q2. Suppose that the LTI filter $ h_1 $ satifies the following difference equation between input $ x[n] $ and output $ y[n] $.
$ {\color{White}ab} y[n] = h_1[n]\;\ast\;x[n] = \frac{1}{4} y[n-1] + x[n] $
Then, find the inverse LTI filter ($ h_2 $) of $ h_1 $, which satisfies the following relationship for any discrete-time signal $ x[n] $,
$ {\color{White}ab} x[n] = h_2[n]\;\ast\;h_1[n]\;\ast\;x[n] $
$ \text{Q3.} $
$ \text{Q4.} $
$ \text{Q5.} $
$ \text{Q6.} $
Back to ECE 438 Fall 2010 Lab Wiki Page
Back to ECE 438 Fall 2010