(Relationship between Z-Transform and F.T.)
Line 17: Line 17:
 
   
 
   
 
  Where <math>\sum_{n = -\infty}^\infty x[n]r^{-n}e^{-j\omega n}</math> is the F.T!
 
  Where <math>\sum_{n = -\infty}^\infty x[n]r^{-n}e^{-j\omega n}</math> is the F.T!
 +
 +
==Properties of the ROC==
 +
 +
Refer to [[Xujun Huang: Properties of ROC_ECE301Fall2008mboutin]]

Revision as of 14:11, 30 November 2008

Z Transform

Discrete analog of Laplace Transform

$ X(z) = \sum_{n = -\infty}^\infty x[n]z^{-n} $

    Where z is a complex variable.

Relationship between Z-Transform and F.T.

$ X(\omega) = X(e^{j\omega}) $
$ X(z)=X(re^{j\omega}) $

Then $ X(z) = F(x[n]r^{-n}) $

$ X(z) = \sum_{n = -\infty}^\infty x[n]z^{-n} = \sum_{n = -\infty}^\infty x[n](re^{j\omega})^{-n} = \sum_{n = -\infty}^\infty x[n]r^{-n}e^{-j\omega n} $

Where $ \sum_{n = -\infty}^\infty x[n]r^{-n}e^{-j\omega n} $ is the F.T!

Properties of the ROC

Refer to Xujun Huang: Properties of ROC_ECE301Fall2008mboutin

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett