(→Relationship between Z-Transform and F.T.) |
|||
Line 17: | Line 17: | ||
Where <math>\sum_{n = -\infty}^\infty x[n]r^{-n}e^{-j\omega n}</math> is the F.T! | Where <math>\sum_{n = -\infty}^\infty x[n]r^{-n}e^{-j\omega n}</math> is the F.T! | ||
+ | |||
+ | ==Properties of the ROC== | ||
+ | |||
+ | Refer to [[Xujun Huang: Properties of ROC_ECE301Fall2008mboutin]] |
Revision as of 14:11, 30 November 2008
Z Transform
Discrete analog of Laplace Transform
$ X(z) = \sum_{n = -\infty}^\infty x[n]z^{-n} $
Where z is a complex variable.
Relationship between Z-Transform and F.T.
$ X(\omega) = X(e^{j\omega}) $
$ X(z)=X(re^{j\omega}) $ Then $ X(z) = F(x[n]r^{-n}) $ $ X(z) = \sum_{n = -\infty}^\infty x[n]z^{-n} = \sum_{n = -\infty}^\infty x[n](re^{j\omega})^{-n} = \sum_{n = -\infty}^\infty x[n]r^{-n}e^{-j\omega n} $ Where $ \sum_{n = -\infty}^\infty x[n]r^{-n}e^{-j\omega n} $ is the F.T!
Properties of the ROC
Refer to Xujun Huang: Properties of ROC_ECE301Fall2008mboutin