(One intermediate revision by the same user not shown)
Line 28: Line 28:
  
 
Does the sequence <math class="inline">\mathbf{Y}_{n}</math>  converge to <math class="inline">0</math> almost everywhere?
 
Does the sequence <math class="inline">\mathbf{Y}_{n}</math>  converge to <math class="inline">0</math> almost everywhere?
 
+
''
 
• You can see the definition of [[ECE 600 Convergence|convergence almost everywhere]].
 
• You can see the definition of [[ECE 600 Convergence|convergence almost everywhere]].
  
Line 40: Line 40:
  
 
• Thus, <math class="inline">\left\{ \mathbf{Y}_{n}\right\} \rightarrow0</math>  with probability 1.
 
• Thus, <math class="inline">\left\{ \mathbf{Y}_{n}\right\} \rightarrow0</math>  with probability 1.
 +
''
 +
'''This is incorrect!'''
  
 
b. (15 points)
 
b. (15 points)

Latest revision as of 13:42, 10 August 2018


ECE Ph.D. Qualifying Exam

Communication, Networking, Signal and Image Processing (CS)

Question 1: Probability and Random Processes

August 2008



2

Let $ \mathbf{X}_{1},\mathbf{X}_{2},\mathbf{X}_{3},\cdots $ be a sequence of i.i.d Bernoulli random variables with $ p=1/2 $ , and let $ \mathbf{Y}_{n}=2^{n}\mathbf{X}_{1}\mathbf{X}_{2}\cdots\mathbf{X}_{n} $ .

a. (15 points)

Does the sequence $ \mathbf{Y}_{n} $ converge to $ 0 $ almost everywhere? • You can see the definition of convergence almost everywhere.

• range of $ \mathbf{X}_{i}=\left\{ 0,1\right\} $ .

• range of $ \mathbf{Y}_{n}=\left\{ 0,2^{n}\right\} $ .

• the probability of $ \mathbf{Y}_{n}=2^{n}\Longrightarrow P\left(\mathbf{Y}_{n}=2^{n}\right)=P\left(\left\{ \mathbf{X}_{1}=1\right\} \cap\cdots\cap\left\{ \mathbf{X}_{n}=1\right\} \right)=\left(\frac{1}{2}\right)^{n}. $

$ \lim_{n\rightarrow\infty}P\left(\mathbf{Y}_{n}=2^{n}\right)=0 $ . $ \lim_{n\rightarrow\infty}P\left(\mathbf{Y}_{n}=0\right)=1 $ .

• Thus, $ \left\{ \mathbf{Y}_{n}\right\} \rightarrow0 $ with probability 1. This is incorrect!

b. (15 points)

Does the sequence $ \mathbf{Y}_{n} $ converge to 0 in the mean square sense?

Note

You can see the definition of convergence in mean-square.

$ E\left[\mathbf{X}^{2}\right]=\sum_{k=0}^{1}k^{2}\left(\frac{1}{2}\right)=0^{2}\cdot\frac{1}{2}+1^{2}\cdot\frac{1}{2}=\frac{1}{2}. $

$ E\left[\left|\mathbf{Y}_{n}-0\right|^{2}\right]=E\left[\mathbf{Y}_{n}^{2}\right]=E\left[2^{2n}\mathbf{X}_{1}^{2}\mathbf{X}_{2}^{2}\cdots\mathbf{X}_{n}^{2}\right]=2^{2n}E\left[\mathbf{X}_{1}^{2}\mathbf{X}_{2}^{2}\cdots\mathbf{X}_{n}^{2}\right]=\left(4E\left[\mathbf{X}^{2}\right]\right)^{n}=2^{n}. $

$ \lim_{n\rightarrow\infty}E\left[\mathbf{Y}_{n}^{2}\right]=\lim_{n\rightarrow\infty}2^{n}=\infty. $

Thus, $ \mathbf{Y}_{n} $ does not converge to $ 0 $ in the mean square sense.


Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang