(6 intermediate revisions by 2 users not shown)
Line 6: Line 6:
  
 
=Homework 1 Solution, [[ECE438]], Fall 2014, [[user:mboutin|Prof. Boutin]]=
 
=Homework 1 Solution, [[ECE438]], Fall 2014, [[user:mboutin|Prof. Boutin]]=
 
+
Note: Please pay attention to the difference between <math>X \ </math> and <math>{\mathcal X}</math>.
  
 
----
 
----
Line 12: Line 12:
 
<math> x(t)=e^{j2 \pi f_0 t} </math>
 
<math> x(t)=e^{j2 \pi f_0 t} </math>
  
From [https://www.projectrhea.org/rhea/index.php/CTFourierTransformPairsCollectedfromECE301withomega  table], <math>e^{j\omega_0t} \leftrightarrow 2\pi \delta(\omega - \omega_0)</math>, therefore <br>
+
From [[CTFourierTransformPairsCollectedfromECE301withomega| table]], <math>{\mathcal X} (\omega)= 2\pi \delta(\omega - \omega_0)</math>, therefore <br>
 
<math>
 
<math>
 
\begin{align}
 
\begin{align}
e^{j2\pi f_0 t } \leftrightarrow &2\pi \delta(2\pi f - 2\pi f_0) \\
+
X(f) & = {\mathcal X} (2 \pi f)\\
&=\delta(f - f_0)
+
&= 2\pi \delta(2\pi f - 2\pi f_0) \\
 +
&=\delta(f - f_0),
 
\end{align}
 
\end{align}
 
</math><br>
 
</math><br>
Where the last line is by the [https://www.projectrhea.org/rhea/index.php/Homework_3_ECE438F09 scaling] property of the delta function.
+
where the last line follows from the [[Homework_3_ECE438F09| scaling property of the Dirac delta]] distribution.
 
----
 
----
 
===A sine===  
 
===A sine===  
<math> x(t)=sin(t) </math>
+
<math>x(t)=\sin (2\pi f_0 t) </math>
 +
 
 +
From [[CTFourierTransformPairsCollectedfromECE301withomega|  table]], <math>{\mathcal X} (\omega)= \frac{\pi}{i} \left[\delta (\omega - \omega_0) - \delta (\omega + \omega_0)\right]</math>, therefore <br>
 +
<math>
 +
\begin{align}
 +
X(f) & = {\mathcal X} (2 \pi f)\\
 +
&= \frac{2 \pi}{2j} \delta (2\pi f - 2\pi f_0) - \frac{2 \pi}{2 j} \delta(2\pi f + 2 \pi f_0)  \\
 +
&=\frac{1}{2j}\delta(f-f_0) - \frac{1}{2j}\delta(f+f_0) ,
 +
\end{align}
 +
</math><br>
 +
where the last line follows from the [[Homework_3_ECE438F09| scaling property of the Dirac delta]] distribution.
 +
 
 
----
 
----
 
===A cosine===
 
===A cosine===
<math>x(t)=cos(t)</math>
+
<math>x(t)=\cos (2\pi f_0 t) </math>
 +
 
 +
From [[CTFourierTransformPairsCollectedfromECE301withomega|  table]], <math>{\mathcal X} (\omega)= \pi \left[\delta (\omega - \omega_0) + \delta (\omega + \omega_0)\right]</math>, therefore <br>
 +
<math>
 +
\begin{align}
 +
X(f) & = {\mathcal X} (2 \pi f)\\
 +
&=  \frac{2 \pi}{2 } \delta (2\pi f - 2\pi f_0) + \frac{2 \pi}{2 } \delta(2\pi f + 2 \pi f_0)  \\
 +
&=\frac{1}{2}\delta(f-f_0) + \frac{1}{2}\delta(f+f_0) ,
 +
\end{align}
 +
</math><br>
 +
where the last line follows from the [[Homework_3_ECE438F09| scaling property of the Dirac delta]] distribution.
 +
 
 +
 
 
----
 
----
 
===A periodic function===
 
===A periodic function===
<math>x(t)=x(t-T)</math>
+
<math>x(t)=\sum_{k=-\infty}^{\infty} a_k e^{jk2\pi f_0 t}</math> <br>
 +
From the [https://www.projectrhea.org/rhea/index.php/CTFourierTransformPairsCollectedfromECE301withomega  table], we have the transform pair:<br>
 +
<math>\sum_{k=-\infty}^{\infty} a_k e^{j\omega_0t} \leftrightarrow 2\pi \sum_{k=-\infty}^{\infty} a_k \delta(\omega-k\omega_0)</math> <br>
 +
Therefore, using the definition that <math>\omega=2\pi f</math>:<br>
 +
<math>
 +
\begin{align}
 +
\sum_{k=-\infty}^{\infty} a_k e^{j2\pi f_0t} \leftrightarrow &2\pi \sum_{k=-\infty}^{\infty} a_k \delta(2\pi f-k2\pi f_0) \\
 +
&=\sum_{k=-\infty}^{\infty} a_k \delta(f-k f_0) \mbox{, by the scaling property of the delta}
 +
\end{align}
 +
</math> <br>
 +
 
 
----
 
----
 
===An impulse train===
 
===An impulse train===
<math>x(t)=\sum_{n=-\infty}^{\infty} \delta (t-nT)</math>
+
<math>x(t)=\sum_{n=-\infty}^{\infty} \delta (t-nT)</math><br>
 +
From the [https://www.projectrhea.org/rhea/index.php/CTFourierTransformPairsCollectedfromECE301withomega  table], we have the transform pair:<br>
 +
<math>\sum_{n=-\infty}^{\infty} \delta (t-nT) \leftrightarrow \frac{2 \pi}{T} \sum_{k=-\infty}^{\infty} \delta \left ( \omega - \frac{2\pi k}{T} \right )</math> <br>
 +
Therefore, using the definition that <math>\omega=2\pi f</math>:<br>
 +
<math>
 +
\begin{align}
 +
\sum_{n=-\infty}^{\infty} \delta (t-nT) \leftrightarrow &\frac{2 \pi}{T} \sum_{k=-\infty}^{\infty} \delta \left ( 2\pi f- \frac{2\pi k}{T} \right ) \\
 +
&=\frac{1}{T} \sum_{k=-\infty}^{\infty} \delta \left (f- \frac{k}{T} \right ) \mbox{, using the scaling property of the delta}
 +
\end{align}
 +
</math>
 
----
 
----
  

Latest revision as of 04:31, 22 September 2014


Homework 1 Solution, ECE438, Fall 2014, Prof. Boutin

Note: Please pay attention to the difference between $ X \ $ and $ {\mathcal X} $.


A complex exponential

$ x(t)=e^{j2 \pi f_0 t} $

From table, $ {\mathcal X} (\omega)= 2\pi \delta(\omega - \omega_0) $, therefore
$ \begin{align} X(f) & = {\mathcal X} (2 \pi f)\\ &= 2\pi \delta(2\pi f - 2\pi f_0) \\ &=\delta(f - f_0), \end{align} $
where the last line follows from the scaling property of the Dirac delta distribution.


A sine

$ x(t)=\sin (2\pi f_0 t) $

From table, $ {\mathcal X} (\omega)= \frac{\pi}{i} \left[\delta (\omega - \omega_0) - \delta (\omega + \omega_0)\right] $, therefore
$ \begin{align} X(f) & = {\mathcal X} (2 \pi f)\\ &= \frac{2 \pi}{2j} \delta (2\pi f - 2\pi f_0) - \frac{2 \pi}{2 j} \delta(2\pi f + 2 \pi f_0) \\ &=\frac{1}{2j}\delta(f-f_0) - \frac{1}{2j}\delta(f+f_0) , \end{align} $
where the last line follows from the scaling property of the Dirac delta distribution.


A cosine

$ x(t)=\cos (2\pi f_0 t) $

From table, $ {\mathcal X} (\omega)= \pi \left[\delta (\omega - \omega_0) + \delta (\omega + \omega_0)\right] $, therefore
$ \begin{align} X(f) & = {\mathcal X} (2 \pi f)\\ &= \frac{2 \pi}{2 } \delta (2\pi f - 2\pi f_0) + \frac{2 \pi}{2 } \delta(2\pi f + 2 \pi f_0) \\ &=\frac{1}{2}\delta(f-f_0) + \frac{1}{2}\delta(f+f_0) , \end{align} $
where the last line follows from the scaling property of the Dirac delta distribution.



A periodic function

$ x(t)=\sum_{k=-\infty}^{\infty} a_k e^{jk2\pi f_0 t} $
From the table, we have the transform pair:
$ \sum_{k=-\infty}^{\infty} a_k e^{j\omega_0t} \leftrightarrow 2\pi \sum_{k=-\infty}^{\infty} a_k \delta(\omega-k\omega_0) $
Therefore, using the definition that $ \omega=2\pi f $:
$ \begin{align} \sum_{k=-\infty}^{\infty} a_k e^{j2\pi f_0t} \leftrightarrow &2\pi \sum_{k=-\infty}^{\infty} a_k \delta(2\pi f-k2\pi f_0) \\ &=\sum_{k=-\infty}^{\infty} a_k \delta(f-k f_0) \mbox{, by the scaling property of the delta} \end{align} $


An impulse train

$ x(t)=\sum_{n=-\infty}^{\infty} \delta (t-nT) $
From the table, we have the transform pair:
$ \sum_{n=-\infty}^{\infty} \delta (t-nT) \leftrightarrow \frac{2 \pi}{T} \sum_{k=-\infty}^{\infty} \delta \left ( \omega - \frac{2\pi k}{T} \right ) $
Therefore, using the definition that $ \omega=2\pi f $:
$ \begin{align} \sum_{n=-\infty}^{\infty} \delta (t-nT) \leftrightarrow &\frac{2 \pi}{T} \sum_{k=-\infty}^{\infty} \delta \left ( 2\pi f- \frac{2\pi k}{T} \right ) \\ &=\frac{1}{T} \sum_{k=-\infty}^{\infty} \delta \left (f- \frac{k}{T} \right ) \mbox{, using the scaling property of the delta} \end{align} $


Discussion

You may discuss the homework below.

  • write comment/question here
    • answer will go here

Back to ECE438, Fall 2014, Prof. Boutin

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang