(11 intermediate revisions by one other user not shown)
Line 1: Line 1:
=QE2012_AC-3_ECE580-5=
+
[[Category:ECE]]
 +
[[Category:QE]]
 +
[[Category:CNSIP]]
 +
[[Category:problem solving]]
 +
[[Category:automatic control]]
 +
[[Category:optimization]]
  
:[[QE2012_AC-3_ECE580-1|Part 1]],[[QE2012_AC-3_ECE580-2|2]],[[QE2012_AC-3_ECE580-3|3]],[[QE2012_AC-3_ECE580-4|4]],[[QE2012_AC-3_ECE580-5|5]]
+
= QE2012_AC-3_ECE580-5 =
 +
 
 +
:[[QE2012 AC-3 ECE580-1|Part 1]],[[QE2012 AC-3 ECE580-2|2]],[[QE2012 AC-3 ECE580-3|3]],[[QE2012 AC-3 ECE580-4|4]],[[QE2012 AC-3 ECE580-5|5]]
  
 
Solution:  
 
Solution:  
  
 
         Standard Form:
 
         Standard Form:
        <span class="texhtml">''Minimize''</span>'''    <math>-x_1^2 + 2x_2</math>'''
+
        <span class="texhtml">''Minimize''</span>'''    <math>-x_1^2 + 2x_2</math>'''
        <span class="texhtml">''Su''</span>'''  <math>g_1(x) = x_1^2+x_2^2 - 1 \le 0</math>'''
+
        <span class="texhtml">''Su''</span>'''  <math>g_1(x) = x_1^2+x_2^2 - 1 \le 0</math>'''
                        <math>g_2(x) = -x_2 \le 0</math>
+
                      <math>g_2(x) = -x_2 \le 0</math>
  
 
         The KKT Condition.
 
         The KKT Condition.
      <math>1. \mu _1, \mu _2 \ge 0</math>  
+
    <math>1. \mu _1, \mu _2 \ge 0</math>  
      <span class="texhtml">2. − 2''x''<sub>1</sub> + 2''x''<sub>1</sub>μ<sub>1</sub> = 0</span>  
+
    <span class="texhtml">2. − 2''x''<sub>1</sub> + 2''x''<sub>1</sub>μ<sub>1</sub> = 0</span>  
        <span class="texhtml">2.2 + 2''x''<sub>2</sub>μ<sub>1</sub> − μ<sub>2</sub> = 0</span>  
+
      <span class="texhtml">2.2 + 2''x''<sub>2</sub>μ<sub>1</sub> − μ<sub>2</sub> = 0</span>  
      <math>3. (x_1^2+x_2^2-1)\mu_1 - x_2\mu _2 = 0</math>  
+
    <math>3. (x_1^2+x_2^2-1)\mu_1 - x_2\mu _2 = 0</math>  
      <math>4. g_1(x),g_2(x) \le 0</math>  
+
    <math>4. g_1(x),g_2(x) \le 0</math>  
  
 
<br>  
 
<br>  
  
 
         Case 1:
 
         Case 1:
      <span class="texhtml">''I''''f'''''</span>''''' <span class="texhtml">μ<sub>1</sub> = 0</span> and <span class="texhtml">μ<sub>2</sub> = 0,</span>'''''
+
    <span class="texhtml">''If</span>'' <span class="texhtml">μ<sub>1</sub> = 0</span> and <span class="texhtml">μ<sub>2</sub> = 0,</span>''
            <span class="texhtml">then<b>,2 = 0</b></span>'''which is impossible.'''
+
          <span class="texhtml">then''', 2 = 0'''</span>''' which is impossible.'''
     
+
   
      Case 2:
+
    Case 2:
      <span class="texhtml">''I''''f'''''</span>''''' <span class="texhtml">μ<sub>1</sub> = 0</span> and <math>\mu_2 \not= 0,</math>'''''
+
    <span class="texhtml">''If</span>'' <span class="texhtml">μ<sub>1</sub> = 0</span> and <math>\mu_2 \not= 0,</math>''
            <span class="texhtml">''t''''h''''e''''n'''''<b>,μ<sub>2</sub> = 2,''x''<sub>1</sub> = 0,''x''<sub>2</sub> = 0.</b></span>'''.'''
+
          <span class="texhtml">''then''', μ<sub>2</sub> = 2,'''''<b>x''<sub>1</sub> = 0,''x''<sub>2</sub> = 0.''</b></span>'''''.'''''
  
 
         Case 3:
 
         Case 3:
      <span class="texhtml">''I''''f'''''</span>''''' <math>\mu_1 \not= 0</math> and <span class="texhtml">μ<sub>2</sub> = 0,</span>'''''
+
    <span class="texhtml">''If</span>'' <math>\mu_1 \not= 0</math> and <span class="texhtml">μ<sub>2</sub> = 0,</span>''
            <math>then, x_1^2 + x_2^2 = 1 </math>
+
          <math>then, x_1^2 + x_2^2 = 1 </math>
                      <math>if x1 \not= 0, then \mu_1 = 1, x_2 = -1 </math>which is impossible.
+
                    <math>\text{if } x_1 \not= 0, \text{then } \mu_1 = 1, x_2 = -1 </math>which is impossible.
                      <span class="texhtml">''i'''f '''x''1 = 0,''then x''<sub>2</sub> = 1,μ<sub>1</sub> =  − 1</span>which is impossible.
+
                    <span class="texhtml">''if  ''x<sub>1</sub> = 0, ''then x''<sub>2</sub> = 1,μ<sub>1</sub> =  − 1 </span>which is impossible.
  
 
         Case 4:
 
         Case 4:
      <span class="texhtml">''I''''f'''''</span>''''' <math>\mu_1 \not= 0</math> and <math>\mu_2 \not= 0,</math>'''''
+
    <span class="texhtml">''If</span>'' <math>\mu_1 \not= 0</math> and <math>\mu_2 \not= 0,</math>''
            <math>then, x_2 = 0, x_1^2 + x_2^2 = 1. So,  x_1 = 1, \mu_1 = 1, \mu_2 = 2. </math>.
+
          <math>then, x_2 = 0, x_1^2 + x_2^2 = 1. So,  x_1 = 1, \mu_1 = 1, \mu_2 = 2. </math>.
  
 
         Therefore, there are two points that satisfy KKT condition.
 
         Therefore, there are two points that satisfy KKT condition.
 
   
 
   
      <math>\begin{bmatrix}
+
    <math>\begin{bmatrix}
 
   \mu_1 ^{\ast}= 0 \\ \mu_2 ^{\ast}= 2 \\ x_1^{\ast}= 0 \\x_2^{\ast}= 0  
 
   \mu_1 ^{\ast}= 0 \\ \mu_2 ^{\ast}= 2 \\ x_1^{\ast}= 0 \\x_2^{\ast}= 0  
 
  \end{bmatrix}and \begin{bmatrix}
 
  \end{bmatrix}and \begin{bmatrix}
Line 45: Line 52:
 
  \end{bmatrix} </math>  
 
  \end{bmatrix} </math>  
  
Solution 2:
+
Solution 2:  
 +
 
 +
The standard form of the optimizing problem is &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp; <math>\text{minimize } -x_1^2 + 2x_2</math>
  
The standard form of the optimizing problem is
+
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>\text{subject to  }   g_1(x)=x_1^2+x_2^2-1 \le 0  \text { and }  g_2(x)=-x_2 \le 0</math>  
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;
+
<math>\text{minimize } -x_1^2 + 2x_2</math>  
+
  
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>\text{subject to  }  g_1(x)=x_1^2+x_2^2-1 \le 0  \text { and }  g_2(x)=-x_2 \le 0</math>
+
The KKT Condition.
  
The KKT Condition.
 
 
       <math>1. \mu _1, \mu _2 \ge 0</math>  
 
       <math>1. \mu _1, \mu _2 \ge 0</math>  
      <math>2.\begin{bmatrix}
+
    <math>2.\begin{bmatrix}
 
   -2x_1+2\mu_1 x_1 \\ 2+2\mu_1 x_2-\mu_2  
 
   -2x_1+2\mu_1 x_1 \\ 2+2\mu_1 x_2-\mu_2  
 
  \end{bmatrix}=0</math>
 
  \end{bmatrix}=0</math>
      <math>3. (x_1^2+x_2^2-1)\mu_1 - x_2\mu _2 = 0</math>  
+
    <math>3. (x_1^2+x_2^2-1)\mu_1 - x_2\mu _2 = 0</math>  
      <math>4. g_1(x),g_2(x) \le 0</math>  
+
    <math>4. g_1(x),g_2(x) \le 0</math>  
  
<math>\text {Case 1: } \mu_1=\mu_2=0 \text{, which implies } 2=0 \Rightarrow \text{Impossible} </math>
+
<math>\text {Case 1: } \mu_1=\mu_2=0 \text{, which implies } 2=0 \Rightarrow \text{ Impossible} </math>  
  
 
<math>\text {Case 2: } \mu_1 \neq 0,  \mu_2=0 \Rightarrow  
 
<math>\text {Case 2: } \mu_1 \neq 0,  \mu_2=0 \Rightarrow  
Line 84: Line 90:
 
\text{ Impossible }
 
\text{ Impossible }
  
</math>
+
</math>  
 
+
  
 +
<br>
  
 
<math>\text {Case 3: } \mu_1 = 0,  \mu_2 \neq 0 \Rightarrow  
 
<math>\text {Case 3: } \mu_1 = 0,  \mu_2 \neq 0 \Rightarrow  
Line 104: Line 110:
 
\end{matrix}\right.
 
\end{matrix}\right.
  
</math>
+
</math>  
  
 
<math>\text {Case 4: } \mu_1 \neq 0,  \mu_2 \neq 0 \Rightarrow  
 
<math>\text {Case 4: } \mu_1 \neq 0,  \mu_2 \neq 0 \Rightarrow  
Line 121: Line 127:
 
\end{matrix}\right.
 
\end{matrix}\right.
  
</math>
+
</math>  
  
<font color="#0000FF "><span style="font-size: 19px;">
+
<font color="#0000FF"><span style="font-size: 19px;">
 
It's a lot more easier as the student notice that ignoring the constraint   
 
It's a lot more easier as the student notice that ignoring the constraint   
 
<math>\color{blue}
 
<math>\color{blue}
 
x_1>0  
 
x_1>0  
 
</math>
 
</math>
doesn't have any effect on the optimizing problem.This will save the time of discussing 4 more cases. But the student should have explain why this is true. </span></font>
+
doesn't have any effect on the optimizing problem.This will save the time of discussing 4 more cases. But the student should have explain why this is true. </span></font>  
  
<font color="#0000FF "><span style="font-size: 19px;">
+
<font color="#0000FF"><span style="font-size: 19px;">
 
Each coefficient <math>\color{blue}\mu </math> can be either 0 or not. When solving the equations, a systematic way would be to discuss all cases.  
 
Each coefficient <math>\color{blue}\mu </math> can be either 0 or not. When solving the equations, a systematic way would be to discuss all cases.  
 
<math>\color{blue}
 
<math>\color{blue}
  
 
</math>
 
</math>
</span></font>
+
</span></font>  
  
 
+
<br> Solution:  
Solution:  
+
  
 
         Apply SOSC to the first point.
 
         Apply SOSC to the first point.
      <math>\nabla g_2(x)^t y = 0</math>
+
    <math>\nabla g_2(x)^t y = 0</math>
      <math>\begin{bmatrix}
+
    <math>\begin{bmatrix}
 
   0 & -1
 
   0 & -1
 
  \end{bmatrix} y = 0</math>
 
  \end{bmatrix} y = 0</math>
      <math>y = \begin{bmatrix}
+
    <math>y = \begin{bmatrix}
 
   a \\ 0
 
   a \\ 0
 
  \end{bmatrix},  a\not= 0</math>
 
  \end{bmatrix},  a\not= 0</math>
Line 152: Line 157:
 
   -2 & 0 \\ 0 & 0  
 
   -2 & 0 \\ 0 & 0  
 
  \end{bmatrix} </math>
 
  \end{bmatrix} </math>
      <span class="texhtml">''Check ''</span><span class="texhtml">''y''<sup>''t''</sup>''L''(''x'',μ)''y''</span>
+
    <span class="texhtml">''Check ''</span><span class="texhtml">''y''<sup>''t''</sup>''L''(''x'',μ)''y''</span>
      <math>\begin{bmatrix}
+
    <math>\begin{bmatrix}
 
   a & 0
 
   a & 0
 
  \end{bmatrix}\begin{bmatrix}
 
  \end{bmatrix}\begin{bmatrix}
Line 164: Line 169:
  
 
         Apply SOSC to the second point.
 
         Apply SOSC to the second point.
      <math>\nabla g_1(x)^t y = 0, </math>
+
    <math>\nabla g_1(x)^t y = 0, </math>
  
 
         <math>\begin{bmatrix}
 
         <math>\begin{bmatrix}
 
   2x_1 & 2x_2
 
   2x_1 & 2x_2
 
  \end{bmatrix} y = 0</math>
 
  \end{bmatrix} y = 0</math>
      <math>y = \begin{bmatrix}
+
    <math>y = \begin{bmatrix}
 
   0 \\ a
 
   0 \\ a
 
  \end{bmatrix} where a\not= 0</math>
 
  \end{bmatrix} where a\not= 0</math>
Line 180: Line 185:
 
   0 & 0 \\ 0 & 2  
 
   0 & 0 \\ 0 & 2  
 
  \end{bmatrix} </math>
 
  \end{bmatrix} </math>
      <span class="texhtml">''Check ''</span><span class="texhtml">''y''<sup>''t''</sup>''L''(''x'',μ)''y''</span>
+
    <span class="texhtml">''Check ''</span><span class="texhtml">''y''<sup>''t''</sup>''L''(''x'',μ)''y''</span>
      <math>\begin{bmatrix}
+
    <math>\begin{bmatrix}
 
   0 & a
 
   0 & a
 
  \end{bmatrix}\begin{bmatrix}
 
  \end{bmatrix}\begin{bmatrix}
Line 188: Line 193:
 
   0 \\ a
 
   0 \\ a
 
  \end{bmatrix} = 2a^2 \gneq 0</math> that implies
 
  \end{bmatrix} = 2a^2 \gneq 0</math> that implies
      <math>\begin{bmatrix}
+
    <math>\begin{bmatrix}
 
   x^{\ast} = 1\\ x^{\ast} = 0  
 
   x^{\ast} = 1\\ x^{\ast} = 0  
 
  \end{bmatrix}</math> is the minimized point.
 
  \end{bmatrix}</math> is the minimized point.
  
Solution 2:
+
Solution 2:  
  
 
<math>\text{For } \left\{\begin{matrix}
 
<math>\text{For } \left\{\begin{matrix}
Line 202: Line 207:
 
\end{matrix}\right. \text{, let } \nabla g_2(x)^T y=0, \text{We get } y=\begin{bmatrix}
 
\end{matrix}\right. \text{, let } \nabla g_2(x)^T y=0, \text{We get } y=\begin{bmatrix}
 
   a\\  0  
 
   a\\  0  
  \end{bmatrix} \text{, where } y \text { are all the points on the tangent plane}</math>
+
  \end{bmatrix} \text{, where } y \text { are all the points on the tangent plane}</math>  
  
 
<math>
 
<math>
Line 208: Line 213:
 
   -2 & 0\\ 0 & 0  
 
   -2 & 0\\ 0 & 0  
 
  \end{bmatrix}
 
  \end{bmatrix}
</math>
+
</math>  
  
 
<math>
 
<math>
y^T L(x,\mu)y=-2a^2 \le 0 \Rightarrow \text{It doesn't satisfy SOSC}
+
y^T L(x,\mu)y=-2a^2 \le 0 \Rightarrow
</math>
+
</math>  
  
 +
<span class="texhtml">SOSC is not satisfied.</span>
  
 
<math>\text{For } \left\{\begin{matrix}
 
<math>\text{For } \left\{\begin{matrix}
Line 223: Line 229:
 
\end{matrix}\right. \text{, let } \nabla g_2(x)^T y=0, \text{We get } y=\begin{bmatrix}
 
\end{matrix}\right. \text{, let } \nabla g_2(x)^T y=0, \text{We get } y=\begin{bmatrix}
 
   0\\ a  
 
   0\\ a  
  \end{bmatrix} \text{, where } y \text { are all the points on the tangent plane}</math>
+
  \end{bmatrix} \text{, where } y \text { are all the points on the tangent plane}</math>  
  
 
<math>
 
<math>
Line 229: Line 235:
 
   0 & 0\\ 0 & 2  
 
   0 & 0\\ 0 & 2  
 
  \end{bmatrix}
 
  \end{bmatrix}
</math>
+
</math>  
  
 
<math>
 
<math>
 
y^T L(x,\mu)y=2a^2 \geq 0 \Rightarrow \text{It satisfies SOSC}
 
y^T L(x,\mu)y=2a^2 \geq 0 \Rightarrow \text{It satisfies SOSC}
</math>
+
</math>  
  
 
<math>
 
<math>
Line 241: Line 247:
 
  \end{bmatrix}
 
  \end{bmatrix}
 
\text{is the minimum point.}
 
\text{is the minimum point.}
</math>
+
</math>  
  
<font color="#0000FF "><span style="font-size: 19px;">
+
<font color="#0000FF"><span style="font-size: 19px;">
 
When checking the SOSC condition, we need to find out the tangent plane. Only the subject function with a non-zero   
 
When checking the SOSC condition, we need to find out the tangent plane. Only the subject function with a non-zero   
 
<math>\color{blue}
 
<math>\color{blue}
Line 249: Line 255:
 
</math>
 
</math>
 
is used to find out the tangent plane.  
 
is used to find out the tangent plane.  
</span></font>
+
</span></font>  
  
 
----
 
----
 +
 
----
 
----
 +
 
<font face="serif"></font><math>\color{blue}\text{Related Problem: }</math>  
 
<font face="serif"></font><math>\color{blue}\text{Related Problem: }</math>  
  
Solve the following problem:'''  
+
Solve the following problem:  
 +
 
 +
            <span class="texhtml">''Minimize''</span>'''    <span class="texhtml">''x''<sub>1</sub>''x''<sub>2</sub></span>'''
 +
        <span class="texhtml">''Subject to''</span>'''    <math>x_1+x_2 \ge 2</math>'''
 +
                      <math> x_2 \ge x_1 </math>
 +
       
 +
 
 +
Find the points that satisfy the KKT condition and check whether it satisfies SOSC .
 +
 
 +
'''Solution''' The standard form of the optimizing problem is
  
            <span class="texhtml">''Minimize''</span>'''    <math>x_1 x_2</math>'''
+
Minimize <span class="texhtml">''x''<sub>1</sub>''x''<sub>2</sub></span>  
        <span class="texhtml">''Subject to''</span>'''    <math>x_1+x_2 \ge 2</math>'''
+
                        <math> x_2 \ge x_1 </math>
+
       
+
Find the points that satisfy the KKT condition and check whether it satisfies SOSC .'''
+
  
'''Solution'''
+
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>\text{subject to  }  g_1(x)=-x_1-x_2+2 \le 0  \text { and }  g_2(x)=x_1-x_2 \le 0</math>  
The standard form of the optimizing problem is
+
Minimize <math> x_1 x_2</math>  
+
  
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>\text{subject to  }  g_1(x)=-x_1-x_2+2 \le 0  \text { and }  g_2(x)=x_1-x_2 \le 0</math>
+
The KKT Condition.
  
The KKT Condition.
 
 
       <math>1. \mu _1, \mu _2 \ge 0</math>  
 
       <math>1. \mu _1, \mu _2 \ge 0</math>  
      <math>2.\begin{bmatrix}
+
    <math>2.\begin{bmatrix}
 
   x_2-\mu_1+\mu_2 \\ x_1-\mu_1-\mu_2
 
   x_2-\mu_1+\mu_2 \\ x_1-\mu_1-\mu_2
 
  \end{bmatrix}=0</math>
 
  \end{bmatrix}=0</math>
      <math>3. (-x_1-x_2+2)\mu_1 +(x_1-x_2)\mu _2 = 0</math>  
+
    <span class="texhtml">3.( − ''x''<sub>1</sub> − ''x''<sub>2</sub> + 2)μ<sub>1</sub> + (''x''<sub>1</sub> − ''x''<sub>2</sub>)μ<sub>2</sub> = 0</span>  
      <math>4. g_1(x),g_2(x) \le 0</math>  
+
    <math>4. g_1(x),g_2(x) \le 0</math>  
  
Similar to the previous problem, we need to discuss the four possible cases of <math>\mu_1 , \mu_2</math>
+
Similar to the previous problem, we need to discuss the four possible cases of <span class="texhtml">μ<sub>1</sub>,μ<sub>2</sub></span>  
  
 
It turns out that there is only one point that satisfy all conditions.  
 
It turns out that there is only one point that satisfy all conditions.  
Line 288: Line 298:
 
x_2=1
 
x_2=1
 
\end{matrix}\right.
 
\end{matrix}\right.
</math>
+
</math>  
  
Now, we need to check whether SOSC is satisfied.
+
Now, we need to check whether SOSC is satisfied.  
  
 
<math>
 
<math>
Line 296: Line 306:
 
   0 & 1\\ 1 & 0  
 
   0 & 1\\ 1 & 0  
 
  \end{bmatrix}
 
  \end{bmatrix}
</math>
+
</math>  
  
 
<math>
 
<math>
Line 302: Line 312:
 
   -a\\ a  
 
   -a\\ a  
 
  \end{bmatrix} \text{, where } y \text { are all the points on the tangent plane}
 
  \end{bmatrix} \text{, where } y \text { are all the points on the tangent plane}
</math>
+
</math>  
  
 
<math>
 
<math>
y^T L(x,\mu)y=-2a^2 \geq 0 \Rightarrow \text{It doesn't satisfy SOSC}
+
y^T L(x,\mu)y=-2a^2 \geq 0 \Rightarrow  
</math>
+
</math>
 +
 
 +
<span class="texhtml">SOSC is not satisfied.</span>  
  
 
<math>
 
<math>
 
\text{So, }
 
\text{So, }
 
\begin{bmatrix}
 
\begin{bmatrix}
x^{\ast} = 1\\ x^{\ast} = 1  
+
x_{1} = 1\\ x_{2} = 1  
 
  \end{bmatrix}
 
  \end{bmatrix}
 
\text{is not the minimum point.}
 
\text{is not the minimum point.}
</math>
+
</math>  
  
[[ QE2012 AC-3 ECE580|Back to QE2012 AC-3 ECE580]]
+
[[QE2012 AC-3 ECE580|Back to QE2012 AC-3 ECE580]]

Latest revision as of 09:12, 13 September 2013


QE2012_AC-3_ECE580-5

Part 1,2,3,4,5

Solution:

        Standard Form:
       Minimize    $ -x_1^2 + 2x_2 $
       Su   $ g_1(x) = x_1^2+x_2^2 - 1 \le 0 $
                      $ g_2(x) = -x_2 \le 0 $
        The KKT Condition.
    $ 1. \mu _1, \mu _2 \ge 0 $  
    2. − 2x1 + 2x1μ1 = 0  
      2.2 + 2x2μ1 − μ2 = 0  
    $ 3. (x_1^2+x_2^2-1)\mu_1 - x_2\mu _2 = 0 $  
    $ 4. g_1(x),g_2(x) \le 0 $  


        Case 1:
    If μ1 = 0 and μ2 = 0,
          then, 2 = 0 which is impossible.
    
    Case 2:
    If μ1 = 0 and $ \mu_2 \not= 0, $
          then, μ2 = 2,x1 = 0,x2 = 0..
        Case 3:
    If $ \mu_1 \not= 0 $ and μ2 = 0,
          $ then, x_1^2 + x_2^2 = 1  $
                    $ \text{if } x_1 \not= 0, \text{then } \mu_1 = 1, x_2 = -1  $which is impossible.
                    if  x1 = 0, then x2 = 1,μ1 =  − 1 which is impossible.
        Case 4:
    If $ \mu_1 \not= 0 $ and $ \mu_2 \not= 0, $
          $ then, x_2 = 0, x_1^2 + x_2^2 = 1. So,  x_1 = 1, \mu_1 = 1, \mu_2 = 2.  $.
        Therefore, there are two points that satisfy KKT condition.

    $ \begin{bmatrix}   \mu_1 ^{\ast}= 0 \\ \mu_2 ^{\ast}= 2 \\ x_1^{\ast}= 0 \\x_2^{\ast}= 0   \end{bmatrix}and \begin{bmatrix}   \mu_1 ^{\ast}= 1 \\ \mu_2 ^{\ast}= 2 \\ x_1^{\ast}= 1 \\x_2^{\ast}= 0   \end{bmatrix}  $ 

Solution 2:

The standard form of the optimizing problem is                                                                                                                                                                                          $ \text{minimize } -x_1^2 + 2x_2 $

                        $ \text{subject to } g_1(x)=x_1^2+x_2^2-1 \le 0 \text { and } g_2(x)=-x_2 \le 0 $

The KKT Condition.

     $ 1. \mu _1, \mu _2 \ge 0 $  
    $ 2.\begin{bmatrix}   -2x_1+2\mu_1 x_1 \\ 2+2\mu_1 x_2-\mu_2   \end{bmatrix}=0 $
    $ 3. (x_1^2+x_2^2-1)\mu_1 - x_2\mu _2 = 0 $  
    $ 4. g_1(x),g_2(x) \le 0 $  

$ \text {Case 1: } \mu_1=\mu_2=0 \text{, which implies } 2=0 \Rightarrow \text{ Impossible} $

$ \text {Case 2: } \mu_1 \neq 0, \mu_2=0 \Rightarrow \left\{\begin{matrix} x_1^2+x_2^2-1=0\\ -2x_1+2\mu_1x_1=0\\ 2+2\mu_1 x_1=0 \end{matrix}\right. \Rightarrow \left\{\begin{matrix} \mu_1=1\\ \mu_2=0\\ x_1=0\\ x_2=-1 \end{matrix}\right. \Rightarrow x_2<0, \text{ Impossible } $


$ \text {Case 3: } \mu_1 = 0, \mu_2 \neq 0 \Rightarrow \left\{\begin{matrix} -x_2\mu_2=0\\ -2x_1=0\\ 2-\mu_2=0 \end{matrix}\right. \Rightarrow \left\{\begin{matrix} \mu_1=0\\ \mu_2=2\\ x_1=0\\ x_2=0 \end{matrix}\right. $

$ \text {Case 4: } \mu_1 \neq 0, \mu_2 \neq 0 \Rightarrow \left\{\begin{matrix} x_1^2+x_2^2-1=0\\ x_2=0\\ \end{matrix}\right. \Rightarrow \left\{\begin{matrix} \mu_1=1\\ \mu_2=2\\ x_1=1\\ x_2=0 \end{matrix}\right. $

It's a lot more easier as the student notice that ignoring the constraint $ \color{blue} x_1>0 $ doesn't have any effect on the optimizing problem.This will save the time of discussing 4 more cases. But the student should have explain why this is true.

Each coefficient $ \color{blue}\mu $ can be either 0 or not. When solving the equations, a systematic way would be to discuss all cases. $ \color{blue} $


Solution:

        Apply SOSC to the first point.
    $ \nabla g_2(x)^t y = 0 $
    $ \begin{bmatrix}   0 & -1  \end{bmatrix} y = 0 $
    $ y = \begin{bmatrix}   a \\ 0  \end{bmatrix},  a\not= 0 $
        $ L(x,\mu) = F(x) + \mu_2 G_2(x) =\begin{bmatrix}   -2 & 0 \\ 0 & 0   \end{bmatrix}  $
    Check ytL(x,μ)y
    $ \begin{bmatrix}   a & 0  \end{bmatrix}\begin{bmatrix}   -2 & 0 \\ 0 & 0   \end{bmatrix} \begin{bmatrix}   a \\ 0  \end{bmatrix} = -2a^2 \lneq 0 $ which means SOSC fails.


        Apply SOSC to the second point.
    $ \nabla g_1(x)^t y = 0,  $
        $ \begin{bmatrix}   2x_1 & 2x_2  \end{bmatrix} y = 0 $
    $ y = \begin{bmatrix}   0 \\ a  \end{bmatrix} where a\not= 0 $
        $ L(x,\mu) = F(x) + \mu_1 G_1(x) + \mu_2 G_2(x) =\begin{bmatrix}   -2 & 0 \\ 0 & 0   \end{bmatrix}  + \begin{bmatrix}   2 & 0 \\ 0 & 2    \end{bmatrix}  = \begin{bmatrix}   0 & 0 \\ 0 & 2   \end{bmatrix}  $
    Check ytL(x,μ)y
    $ \begin{bmatrix}   0 & a  \end{bmatrix}\begin{bmatrix}   0 & 0 \\ 0 & 2   \end{bmatrix} \begin{bmatrix}   0 \\ a  \end{bmatrix} = 2a^2 \gneq 0 $ that implies
    $ \begin{bmatrix}   x^{\ast} = 1\\ x^{\ast} = 0   \end{bmatrix} $ is the minimized point.

Solution 2:

$ \text{For } \left\{\begin{matrix} \mu_1=0\\ \mu_2=2\\ x_1=0\\ x_2=0 \end{matrix}\right. \text{, let } \nabla g_2(x)^T y=0, \text{We get } y=\begin{bmatrix} a\\ 0 \end{bmatrix} \text{, where } y \text { are all the points on the tangent plane} $

$ L(x,\mu)=F(x,\mu)+\mu_2 G_2 (x)=\begin{bmatrix} -2 & 0\\ 0 & 0 \end{bmatrix} $

$ y^T L(x,\mu)y=-2a^2 \le 0 \Rightarrow $

SOSC is not satisfied.

$ \text{For } \left\{\begin{matrix} \mu_1=1\\ \mu_2=2\\ x_1=1\\ x_2=0 \end{matrix}\right. \text{, let } \nabla g_2(x)^T y=0, \text{We get } y=\begin{bmatrix} 0\\ a \end{bmatrix} \text{, where } y \text { are all the points on the tangent plane} $

$ L(x,\mu)=F(x,\mu)+\mu_2 G_2 (x)=\begin{bmatrix} 0 & 0\\ 0 & 2 \end{bmatrix} $

$ y^T L(x,\mu)y=2a^2 \geq 0 \Rightarrow \text{It satisfies SOSC} $

$ \text{So, } \begin{bmatrix} x^{\ast} = 1\\ x^{\ast} = 0 \end{bmatrix} \text{is the minimum point.} $

When checking the SOSC condition, we need to find out the tangent plane. Only the subject function with a non-zero $ \color{blue} \mu $ is used to find out the tangent plane.



$ \color{blue}\text{Related Problem: } $

Solve the following problem:

           Minimize    x1x2
       Subject to    $ x_1+x_2 \ge 2 $
                      $  x_2 \ge x_1  $
       

Find the points that satisfy the KKT condition and check whether it satisfies SOSC .

Solution The standard form of the optimizing problem is

Minimize x1x2 

                        $ \text{subject to } g_1(x)=-x_1-x_2+2 \le 0 \text { and } g_2(x)=x_1-x_2 \le 0 $

The KKT Condition.

     $ 1. \mu _1, \mu _2 \ge 0 $  
    $ 2.\begin{bmatrix}   x_2-\mu_1+\mu_2 \\ x_1-\mu_1-\mu_2  \end{bmatrix}=0 $
    3.( − x1x2 + 2)μ1 + (x1x22 = 0  
    $ 4. g_1(x),g_2(x) \le 0 $ 

Similar to the previous problem, we need to discuss the four possible cases of μ12

It turns out that there is only one point that satisfy all conditions.

$ \left\{\begin{matrix} \mu_1=1\\ \mu_2=0\\ x_1=1\\ x_2=1 \end{matrix}\right. $

Now, we need to check whether SOSC is satisfied.

$ L(x,\mu)=F(x,\mu)+\mu_1 G_1 (x)=\begin{bmatrix} 0 & 1\\ 1 & 0 \end{bmatrix} $

$ y=\begin{bmatrix} -a\\ a \end{bmatrix} \text{, where } y \text { are all the points on the tangent plane} $

$ y^T L(x,\mu)y=-2a^2 \geq 0 \Rightarrow $

SOSC is not satisfied.

$ \text{So, } \begin{bmatrix} x_{1} = 1\\ x_{2} = 1 \end{bmatrix} \text{is not the minimum point.} $

Back to QE2012 AC-3 ECE580

Alumni Liaison

Followed her dream after having raised her family.

Ruth Enoch, PhD Mathematics