(10 intermediate revisions by 3 users not shown)
Line 4: Line 4:
 
[[Category:problem solving]]
 
[[Category:problem solving]]
 
[[Category:random variables]]
 
[[Category:random variables]]
 +
[[Category:probability]]
 +
 +
<center>
 +
<font size= 4>
 +
[[ECE_PhD_Qualifying_Exams|ECE Ph.D. Qualifying Exam]]
 +
</font size>
 +
 +
<font size= 4>
 +
Communication, Networking, Signal and Image Processing (CS)
 +
 +
Question 1: Probability and Random Processes
 +
</font size>
 +
 +
August 2007
 +
</center>
 +
----
 +
----
 +
==Question==
 +
 +
'''1. (25 Points)'''
  
= [[ECE_PhD_Qualifying_Exams|ECE Ph.D. Qualifying Exam]]: COMMUNICATIONS, NETWORKING, SIGNAL AND IMAGE PROESSING (CS)- Question 1, August 2007=
 
 
X and Y are iid random variable with
 
X and Y are iid random variable with
  
Line 17: Line 36:
  
 
d) Find <math> P(Y=kX)\ </math>.
 
d) Find <math> P(Y=kX)\ </math>.
 +
 +
 +
:'''Click [[ECE_PhD_QE_CNSIP_2007_Problem1.1|here]] to view student [[ECE_PhD_QE_CNSIP_2007_Problem1.1|answers and discussions]]'''
 +
 
----
 
----
=Solution 1 (retrived from [[Automatic_Controls:Linear_Systems_(HKNQE_August_2007)_Problem_1|here]])=
+
'''2. (25 Points)'''
  
*To find <math> P(min(X,Y)=k)\ </math>, let <math> Z = min(X,Y)\ </math>. Then finding the pmf of Z uses the fact that X and Y are iid
+
Let <math class="inline">\left\{ \mathbf{X}_{n}\right\} _{n\geq1}</math>  be a sequence of binomially distributed random variables, with the <math class="inline">n</math> -th random variable <math class="inline">\mathbf{X}_{n}</math> having pmf <math class="inline">p_{\mathbf{X}_{n}}\left(k\right)=P\left(\left\{ \mathbf{X}_{n}=k\right\} \right)=\left(\begin{array}{c}
        <math> P(Z=k) = P(X \ge k,Y \ge k) = P(X \ge k)P(Y \ge k) = P(X \ge k)^2 </math>
+
n\\
 +
k
 +
\end{array}\right)p_{n}^{k}\left(1-p_{n}\right)^{n-k}\;,\qquad k=0,\cdots,n,\quad p_{n}\in\left(0,1\right).</math>  
  
        <math> P(Z=k) = \left ( \sum_{i=k}^N \frac {1}{2^i} \right )^2 = \left ( \frac {1}{2^k} \right )^2 = \frac {1}{4^k} </math>
+
Show that, if the <math class="inline">p_{n}</math>  have the property that <math class="inline">np_{n}\rightarrow\lambda</math>  as <math class="inline">n\rightarrow\infty</math> , where <math class="inline">\lambda</math>  is a positive constant, then the sequence <math class="inline">\left\{ \mathbf{X}_{n}\right\} _{n\geq1}</math>  converges in distribution to a Poisson random variable <math class="inline">\mathbf{X}</math> with mean <math class="inline">\lambda</math> .
  
*To find <math> P(X=Y)\ </math>, note that  X and Y are iid and summing across all possible i,
+
'''Hint:'''
        <math> P(X=Y) = \sum_{i=1}^\infty P(X=i, Y=i) = \sum_{i=1}^\infty P(X=i)P(Y=i) = \sum_{i=1}^\infty \frac {1}{4^i} = \frac {1}{3} </math>
+
  
*To find <math> P(Y>X)\ </math>, again note that X and Y are iid and summing across all possible i,
+
You may find the following fact useful:
        <math> P(Y>X) = \sum_{i=1}^\infty P(Y>i, X=i) = \sum_{i=1}^\infty P(Y>i)P(x=i)</math>
+
  
:Next, find <math> P(Y<i)\ </math>
+
<math class="inline">\lim_{n\rightarrow\infty}\left(1+\frac{x}{n}\right)^{n}=e^{x}.</math>  
        <math> P(Y>i) = 1 - P(Y \le i) </math>
+
  
        <math> P(Y \le i) = \sum_{i=1}^\infty \frac {1}{2^i} = 1 + \frac {1}{2^i} </math>
 
  
      <math> \therefore P(Y>i) = \frac {1}{2^i} </math>
+
:'''Click [[ECE_PhD_QE_CNSIP_2007_Problem1.2|here]] to view student [[ECE_PhD_QE_CNSIP_2007_Problem1.2|answers and discussions]]''
 +
----
 +
'''3. (25 Points)'''
 +
 
 +
Let <math class="inline">\mathbf{X}\left(t\right)</math> be a real Gaussian random process with mean function <math class="inline">\mu\left(t\right)</math>  and autocovariance function <math class="inline">C_{\mathbf{XX}}\left(t_{1},t_{2}\right)</math> .
 +
 
 +
'''(a)'''
 +
 
 +
Write the expression for the <math class="inline">n</math> -th order characteristic function of <math class="inline">\mathbf{X}\left(t\right)</math>  in terms of <math class="inline">\mu\left(t\right)</math>  and <math class="inline">C_{\mathbf{XX}}\left(t_{1},t_{2}\right)</math> .
 +
 
 +
ref.
 +
 
 +
There are the note about the [[ECE 600 General Concepts of Stochastic Processes Definitions|n-th order characteristic function of Gaussians random process]] . The only difference between the note and this problem is that this problem use the <math class="inline">\mu\left(t\right)</math>  rather than <math class="inline">\eta_{\mathbf{X}}\left(t\right)=E\left[\mathbf{X}\left(t\right)\right]</math> .
 +
 
 +
'''Solution'''
 +
 
 +
<math class="inline">\Phi_{\mathbf{X}\left(t_{1}\right)\cdots\mathbf{X}\left(t_{n}\right)}\left(\omega_{1},\cdots,\omega_{n}\right)=\exp\left\{ i\sum_{k=1}^{n}\mu_{\mathbf{X}}\left(t_{k}\right)\omega_{k}-\frac{1}{2}\sum_{j=1}^{n}\sum_{k=1}^{n}C_{\mathbf{XX}}\left(t_{j},t_{k}\right)\omega_{j}\omega_{k}\right\}</math> .
 +
 
 +
'''(b)'''
 +
 
 +
Show that the probabilistic description of <math class="inline">\mathbf{X}\left(t\right)</math>  is completely characterized by <math class="inline">\mu\left(t\right)</math>  and autocovariance function <math class="inline">C_{\mathbf{XX}}\left(t_{1},t_{2}\right)</math> .
 +
 
 +
 
 +
:'''Click [[ECE_PhD_QE_CNSIP_2007_Problem1.3|here]] to view student [[ECE_PhD_QE_CNSIP_2007_Problem1.3|answers and discussions]]''
 +
----
 +
 
 +
'''4. (25 Points)'''
  
:Plugging this result back into the original expression yields
+
Let <math class="inline">\mathbf{X}_{1},\mathbf{X}_{2},\mathbf{X}_{3},\cdots</math>  be a sequence of independent, identically distributed random variables, each having Cauchy pdf <math class="inline">f\left(x\right)=\frac{1}{\pi\left(1+x^{2}\right)}\;,\qquad-\infty<x<\infty. Let \mathbf{Y}_{n}=\frac{1}{n}\sum_{i=1}^{n}\mathbf{X}_{i}.</math> Find the pdf of <math class="inline">\mathbf{Y}_{n}</math> . Describe how the pdf of <math class="inline">\mathbf{Y}_{n}</math>  depends on <math class="inline">n</math> . Does the sequence <math class="inline">\mathbf{Y}_{1},\mathbf{Y}_{2},\mathbf{Y}_{3},\cdots</math> converge in distribution? If yes, what is the distribution of the random variable it converges to?
        <math> P(Y<X) = \sum_{i=1}^\infty \frac {1}{4^i} = \frac {1}{3} </math>
+
  
  
*To find <math> P(Y=kX)\ </math>, note that X and Y are iid and summing over all possible combinations one arrives at
+
:'''Click [[ECE_PhD_QE_CNSIP_2007_Problem1.4|here]] to view student [[ECE_PhD_QE_CNSIP_2007_Problem1.4|answers and discussions]]''
        <math> P(Y=kX) = \sum_{i=1}^\infty i = 1^\infty P(Y=ki, X=i) = \sum_{i=1}^\infty P(Y=ki)P(X=i) </math>
+
:Thus,
+
        <math> P(Y=kX) = \sum_{i=1}^\infty \frac {1}{2^{ki}} \frac {1}{2^i} = \sum_{i=1}^\infty \frac {1}{2^{(k+1)i}} = \frac {1}{2^{(k+1)}-1} </math>
+
 
----
 
----
==Solution 2==
 
Write it here.
 
 
----
 
----
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]

Latest revision as of 09:57, 10 March 2015


ECE Ph.D. Qualifying Exam

Communication, Networking, Signal and Image Processing (CS)

Question 1: Probability and Random Processes

August 2007



Question

1. (25 Points)

X and Y are iid random variable with

$ P(X=i) = P(Y=i) = \frac {1}{2^i}\ ,i = 1,2,3,... $

a) Find $ P(min(X,Y)=k)\ $.

b) Find $ P(X=Y)\ $.

c) Find $ P(Y>X)\ $.

d) Find $ P(Y=kX)\ $.


Click here to view student answers and discussions

2. (25 Points)

Let $ \left\{ \mathbf{X}_{n}\right\} _{n\geq1} $ be a sequence of binomially distributed random variables, with the $ n $ -th random variable $ \mathbf{X}_{n} $ having pmf $ p_{\mathbf{X}_{n}}\left(k\right)=P\left(\left\{ \mathbf{X}_{n}=k\right\} \right)=\left(\begin{array}{c} n\\ k \end{array}\right)p_{n}^{k}\left(1-p_{n}\right)^{n-k}\;,\qquad k=0,\cdots,n,\quad p_{n}\in\left(0,1\right). $

Show that, if the $ p_{n} $ have the property that $ np_{n}\rightarrow\lambda $ as $ n\rightarrow\infty $ , where $ \lambda $ is a positive constant, then the sequence $ \left\{ \mathbf{X}_{n}\right\} _{n\geq1} $ converges in distribution to a Poisson random variable $ \mathbf{X} $ with mean $ \lambda $ .

Hint:

You may find the following fact useful:

$ \lim_{n\rightarrow\infty}\left(1+\frac{x}{n}\right)^{n}=e^{x}. $


'Click here to view student answers and discussions

3. (25 Points)

Let $ \mathbf{X}\left(t\right) $ be a real Gaussian random process with mean function $ \mu\left(t\right) $ and autocovariance function $ C_{\mathbf{XX}}\left(t_{1},t_{2}\right) $ .

(a)

Write the expression for the $ n $ -th order characteristic function of $ \mathbf{X}\left(t\right) $ in terms of $ \mu\left(t\right) $ and $ C_{\mathbf{XX}}\left(t_{1},t_{2}\right) $ .

ref.

There are the note about the n-th order characteristic function of Gaussians random process . The only difference between the note and this problem is that this problem use the $ \mu\left(t\right) $ rather than $ \eta_{\mathbf{X}}\left(t\right)=E\left[\mathbf{X}\left(t\right)\right] $ .

Solution

$ \Phi_{\mathbf{X}\left(t_{1}\right)\cdots\mathbf{X}\left(t_{n}\right)}\left(\omega_{1},\cdots,\omega_{n}\right)=\exp\left\{ i\sum_{k=1}^{n}\mu_{\mathbf{X}}\left(t_{k}\right)\omega_{k}-\frac{1}{2}\sum_{j=1}^{n}\sum_{k=1}^{n}C_{\mathbf{XX}}\left(t_{j},t_{k}\right)\omega_{j}\omega_{k}\right\} $ .

(b)

Show that the probabilistic description of $ \mathbf{X}\left(t\right) $ is completely characterized by $ \mu\left(t\right) $ and autocovariance function $ C_{\mathbf{XX}}\left(t_{1},t_{2}\right) $ .


'Click here to view student answers and discussions

4. (25 Points)

Let $ \mathbf{X}_{1},\mathbf{X}_{2},\mathbf{X}_{3},\cdots $ be a sequence of independent, identically distributed random variables, each having Cauchy pdf $ f\left(x\right)=\frac{1}{\pi\left(1+x^{2}\right)}\;,\qquad-\infty<x<\infty. Let \mathbf{Y}_{n}=\frac{1}{n}\sum_{i=1}^{n}\mathbf{X}_{i}. $ Find the pdf of $ \mathbf{Y}_{n} $ . Describe how the pdf of $ \mathbf{Y}_{n} $ depends on $ n $ . Does the sequence $ \mathbf{Y}_{1},\mathbf{Y}_{2},\mathbf{Y}_{3},\cdots $ converge in distribution? If yes, what is the distribution of the random variable it converges to?


'Click here to view student answers and discussions


Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn