(2 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 
[[Category:2010 Fall ECE 438 Boutin]]
 
[[Category:2010 Fall ECE 438 Boutin]]
 +
[[Category:Problem_solving]]
 +
[[Category:ECE438]]
 +
[[Category:digital signal processing]]
 +
 
== Quiz Questions Pool for Week 14 ==
 
== Quiz Questions Pool for Week 14 ==
 
----
 
----
Line 37: Line 41:
  
 
c. Find a simple expression for the frequency response (DSFT) H(u,v) of this filter.
 
c. Find a simple expression for the frequency response (DSFT) H(u,v) of this filter.
 
d. Plot H(u,v) along the u axis (v = 0) , along the v axis (u = 0) , along the line u = v , and along the line u = -v.
 
  
 
* [[ECE438_Week14_Quiz_Q3sol|Solution]].
 
* [[ECE438_Week14_Quiz_Q3sol|Solution]].
Line 52: Line 54:
 
* [[ECE438_Week14_Quiz_Q4sol|Solution]].
 
* [[ECE438_Week14_Quiz_Q4sol|Solution]].
 
----
 
----
 +
Q5. Consider the following discrete space system
  
 +
[[Image:Quiz14Q5.jpg]]
 +
 +
where <math>b(i,j)</math> is the quantized binary image, <math>f(i,j)</math> is the input and <math>\tilde{f}(i,j)</math> is the modified image by means of the past quantization errors.
 +
 +
Furthermore we have that
 +
:<math>\begin{align}e(i,j)&=\tilde{f}(i,j)-b(i,j) \\ \tilde{f}(i,j)&=f(i,j)+H(i,j)\ast e(i,j) \\ \end{align}</math>
 +
 +
Now, we have <math>H(i,j)=\delta(i-1,j)\,\!</math> is a strictly causal filter and the quantizer <math>Q(\tilde{f})</math> given as
 +
:<math>Q(\tilde{f})=\left\{ \begin{array}{ll}1,& \tilde{f}(i,j)>0.5 \\ 0, & \tilde{f}(i,j)\leq 0.5 \end{array} \right. </math>
 +
 +
Assuming that <math>e(i,j)=0</math> for <math>i<0</math> and <math>j<0</math> and the input <math>f(i,j)</math> to be defined as
 +
 +
[[Image:Quiz14Q5_1.jpg]]
 +
 +
a. compute the modified input <math>\tilde{f}(i,j)</math>.
 +
 +
[[Image:Quiz14Q5_2.jpg]]
 +
 +
b. compute the output <math>b(i,j)</math>.
 +
 +
[[Image:Quiz14Q5_3.jpg]]
 +
 +
* [[ECE438_Week14_Quiz_Q5sol|Solution]].
 +
----
 
Back to [[ECE438_Lab_Fall_2010|ECE 438 Fall 2010 Lab Wiki Page]]
 
Back to [[ECE438_Lab_Fall_2010|ECE 438 Fall 2010 Lab Wiki Page]]
  
 
Back to [[2010_Fall_ECE_438_Boutin|ECE 438 Fall 2010]]
 
Back to [[2010_Fall_ECE_438_Boutin|ECE 438 Fall 2010]]

Latest revision as of 09:43, 11 November 2011


Quiz Questions Pool for Week 14


Q1. Assume we know (or can measure) a function

$ \begin{align} p(x) &= \int_{-\infty}^{\infty}f(x,y)dy \end{align} $

Using the definition of the CSFT, derive an expression for F(u,0) in terms of the function p(x).


Q2. Consider the following 2D system with input x(m,n) and output y(m,n)

$ y(m,n) = x(m,n) + \lambda \left( x(m,n) - \frac{1}{9} \sum_{k=-1}^{1}\sum_{l=-1}^{1}x(m-k,n-l) \right) $

a. Is this a linear system? Is it space invariant?
b. What is the 2D impulse response of this system?
c. Calculate its frequency response H(u,v).
d. Describe how the filter behaves when $ \lambda $ is positive and large.
e. Describe how the filter behaves when $ \lambda $ is negative and bigger than -1.


Q3. Consider a 3 * 3 FIR filter with coefficients h[m, n]

Q3 table.jpg

a. Find a difference equation that can be used to implement this filter.

b. Given an input image, find the center pixel value of output image.

Q3 inputimg.jpg

c. Find a simple expression for the frequency response (DSFT) H(u,v) of this filter.


Q4. Consider the following discrete space system with input x[m,n] and output y[m,n]given by

$ y[m,n]=x[m,n]+\frac{1}{2}y[m+1,n-1] $

Compute the transfer function

$ H(z_1 ,z_2)=\frac{Y(z_1 ,z_2)}{X(z_1 ,z_2)} $


Q5. Consider the following discrete space system

Quiz14Q5.jpg

where $ b(i,j) $ is the quantized binary image, $ f(i,j) $ is the input and $ \tilde{f}(i,j) $ is the modified image by means of the past quantization errors.

Furthermore we have that

$ \begin{align}e(i,j)&=\tilde{f}(i,j)-b(i,j) \\ \tilde{f}(i,j)&=f(i,j)+H(i,j)\ast e(i,j) \\ \end{align} $

Now, we have $ H(i,j)=\delta(i-1,j)\,\! $ is a strictly causal filter and the quantizer $ Q(\tilde{f}) $ given as

$ Q(\tilde{f})=\left\{ \begin{array}{ll}1,& \tilde{f}(i,j)>0.5 \\ 0, & \tilde{f}(i,j)\leq 0.5 \end{array} \right. $

Assuming that $ e(i,j)=0 $ for $ i<0 $ and $ j<0 $ and the input $ f(i,j) $ to be defined as

Quiz14Q5 1.jpg

a. compute the modified input $ \tilde{f}(i,j) $.

Quiz14Q5 2.jpg

b. compute the output $ b(i,j) $.

Quiz14Q5 3.jpg


Back to ECE 438 Fall 2010 Lab Wiki Page

Back to ECE 438 Fall 2010

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn