(7 intermediate revisions by 3 users not shown)
Line 1: Line 1:
 +
[[Category:Problem_solving]]
 +
[[Category:ECE438]]
 +
[[Category:digital signal processing]]
 
[[Category:2010 Fall ECE 438 Boutin]]
 
[[Category:2010 Fall ECE 438 Boutin]]
 
<span style="color:green"> Under construction </span> -[[User:han83|Jaemin]]
 
  
 
----
 
----
Line 18: Line 19:
 
Q2. Suppose that the LTI filter <math>h_1</math> satifies the following difference equation between input <math>x[n]</math> and output <math>y[n]</math>.
 
Q2. Suppose that the LTI filter <math>h_1</math> satifies the following difference equation between input <math>x[n]</math> and output <math>y[n]</math>.
  
<math> {\color{White}ab} y[n] = h_1[n]\;\ast\;x[n] = \frac{1}{4} y[n-1] + x[n] </math>
+
<math> {\color{White}ab} y[n] = h_1[n]\;\ast\;x[n] = \frac{1}{4} y[n-1] + x[n] </math>  
  
Then, find the inverse LTI filter (<math>h_2</math>) of <math>h_1</math>, which satisfies the following relationship for any discrete-time signal <math>x[n]</math>,
+
(<math>\ast</math> implies the convolution)
 +
 
 +
Then, find the inverse LTI filter <math>h_2</math> of <math>h_1</math>, which satisfies the following relationship for any discrete-time signal <math>x[n]</math>,
 +
 
 +
(assume that the impulse responses are causal and zero when <math>n<0</math>)
  
 
<math> {\color{White}ab} x[n] = h_2[n]\;\ast\;h_1[n]\;\ast\;x[n] </math>
 
<math> {\color{White}ab} x[n] = h_2[n]\;\ast\;h_1[n]\;\ast\;x[n] </math>
Line 27: Line 32:
 
----
 
----
 
<math>\text{Q3.}</math>
 
<math>\text{Q3.}</math>
 +
 +
The following figure shows the flow diagram that results for an N=8 FFT algorithm. The bolded line indicates a path from input sample x[7] to DFT sample X[2].
 +
 +
[[Image:Week8_Q3_FFT.jpg]]
 +
 +
 +
a) What is the gain of the path?
 +
 +
b) How many paths exist beginning at x[7] and ending up at X[2]? Does the result apply to a general condition? i.e. How many paths are there between every input sample and output sample?
 +
 +
c) Consider DFT sample X[2]. Following paths displayed in the flow diagram. Prove that every input sample contributes the proper amount to the output DFT sample.
 +
 +
i.e. <math>X[2]=\sum_{n=0}^{N-1} x[n]e^{-j(2\pi /N)2n}</math>
 +
 
* [[ECE438_Week8_Quiz_Q3sol|Solution]].
 
* [[ECE438_Week8_Quiz_Q3sol|Solution]].
 
----
 
----
 
<math>\text{Q4.}</math>
 
<math>\text{Q4.}</math>
 +
 +
Consider a system described by the following equation
 +
 +
y[n] = x[n] + x[n-1] + y[n-1]
 +
 +
a. Find the response y[n] to the input
 +
 +
<math>
 +
x[n] = \begin{cases}
 +
(-1)^n, & 0 \le n \le 4 \\
 +
0, & \mbox{else}
 +
\end{cases}
 +
</math>
 +
 +
b. State whether or not this system is (i) linear, (ii) time-invariant, (iii) memoryless, (iv) causal, (v) bounded-input-bounded output stable.
 +
 +
c. Find an expression for the frequency response <math>H(\omega)</math> for this system.
 +
 +
d. Find the output y[n] when the input x[n] = sin(n<math>\pi</math>/4) using the answer to part c.
 +
 +
e. Find an expression for impulse response h[n].
 +
 
* [[ECE438_Week8_Quiz_Q4sol|Solution]].
 
* [[ECE438_Week8_Quiz_Q4sol|Solution]].
 
----
 
----
<math>\text{Q5.}</math>
+
 
* [[ECE438_Week8_Quiz_Q5sol|Solution]].
+
----
+
<math>\text{Q6.}</math>
+
* [[ECE438_Week8_Quiz_Q6sol|Solution]].
+
----
+
 
Back to [[ECE438_Lab_Fall_2010|ECE 438 Fall 2010 Lab Wiki Page]]
 
Back to [[ECE438_Lab_Fall_2010|ECE 438 Fall 2010 Lab Wiki Page]]
  
 
Back to [[2010_Fall_ECE_438_Boutin|ECE 438 Fall 2010]]
 
Back to [[2010_Fall_ECE_438_Boutin|ECE 438 Fall 2010]]

Latest revision as of 09:42, 11 November 2011



Quiz Questions Pool for Week 8


Q1. Find the impulse response of the following LTI systems and draw their block diagram.

(assume that the impulse response is causal and zero when $ n<0 $)

$ {\color{White}ab}\text{a)}{\color{White}abc}y[n] = 0.6 y[n-1] + 0.4 x[n] $

$ {\color{White}ab}\text{b)}{\color{White}abc}y[n] = y[n-1] + 0.25(x[n] - x[n-3]) $


Q2. Suppose that the LTI filter $ h_1 $ satifies the following difference equation between input $ x[n] $ and output $ y[n] $.

$ {\color{White}ab} y[n] = h_1[n]\;\ast\;x[n] = \frac{1}{4} y[n-1] + x[n] $

($ \ast $ implies the convolution)

Then, find the inverse LTI filter $ h_2 $ of $ h_1 $, which satisfies the following relationship for any discrete-time signal $ x[n] $,

(assume that the impulse responses are causal and zero when $ n<0 $)

$ {\color{White}ab} x[n] = h_2[n]\;\ast\;h_1[n]\;\ast\;x[n] $


$ \text{Q3.} $

The following figure shows the flow diagram that results for an N=8 FFT algorithm. The bolded line indicates a path from input sample x[7] to DFT sample X[2].

Week8 Q3 FFT.jpg


a) What is the gain of the path?

b) How many paths exist beginning at x[7] and ending up at X[2]? Does the result apply to a general condition? i.e. How many paths are there between every input sample and output sample?

c) Consider DFT sample X[2]. Following paths displayed in the flow diagram. Prove that every input sample contributes the proper amount to the output DFT sample.

i.e. $ X[2]=\sum_{n=0}^{N-1} x[n]e^{-j(2\pi /N)2n} $


$ \text{Q4.} $

Consider a system described by the following equation

y[n] = x[n] + x[n-1] + y[n-1]

a. Find the response y[n] to the input

$ x[n] = \begin{cases} (-1)^n, & 0 \le n \le 4 \\ 0, & \mbox{else} \end{cases} $

b. State whether or not this system is (i) linear, (ii) time-invariant, (iii) memoryless, (iv) causal, (v) bounded-input-bounded output stable.

c. Find an expression for the frequency response $ H(\omega) $ for this system.

d. Find the output y[n] when the input x[n] = sin(n$ \pi $/4) using the answer to part c.

e. Find an expression for impulse response h[n].


Back to ECE 438 Fall 2010 Lab Wiki Page

Back to ECE 438 Fall 2010

Alumni Liaison

BSEE 2004, current Ph.D. student researching signal and image processing.

Landis Huffman