(Problem 1: Imperfect camera)
 
(3 intermediate revisions by 3 users not shown)
Line 1: Line 1:
 +
[[Category:ECE302Fall2008_ProfSanghavi]]
 +
[[Category:probabilities]]
 +
[[Category:ECE302]]
 +
[[Category:homework]]
 +
[[Category:problem solving]]
 +
 
== Instructions ==
 
== Instructions ==
 
Homework 9 can be [https://engineering.purdue.edu/ece302/homeworks/HW9FA08.pdf downloaded here] on the [https://engineering.purdue.edu/ece302/ ECE 302 course website].
 
Homework 9 can be [https://engineering.purdue.edu/ece302/homeworks/HW9FA08.pdf downloaded here] on the [https://engineering.purdue.edu/ece302/ ECE 302 course website].
Line 15: Line 21:
 
*[[Problem 1 - Tiffany Sukwanto_ECE302Fall2008sanghavi]]
 
*[[Problem 1 - Tiffany Sukwanto_ECE302Fall2008sanghavi]]
 
*[[Problem 1 - Zhongtian Wang_ECE302Fall2008sanghavi]]
 
*[[Problem 1 - Zhongtian Wang_ECE302Fall2008sanghavi]]
 +
*[[Problem 1 - Chris Rush_ECE302Fall2008sanghavi]]
  
 
== Problem 2: Imperfect Radar ==
 
== Problem 2: Imperfect Radar ==
Line 27: Line 34:
  
 
*[[Problem 2 - AJ Hartnett_ECE302Fall2008sanghavi]]
 
*[[Problem 2 - AJ Hartnett_ECE302Fall2008sanghavi]]
 +
 +
*[[Problem 2 - Josh Long_ECE302Fall2008sanghavi]]
  
 
== Problem 3: Exponential Parameter Estimation ==
 
== Problem 3: Exponential Parameter Estimation ==
 
The parameter of an exponential random variable has to be estimated from one sample. What is the ML estimator? Is it unbiased?
 
The parameter of an exponential random variable has to be estimated from one sample. What is the ML estimator? Is it unbiased?
  
 +
*[[Problem 3 - Nicholas Browdues_ECE302Fall2008sanghavi]]
 
*[[Problem 3 - Arie Lyles_ECE302Fall2008sanghavi]]
 
*[[Problem 3 - Arie Lyles_ECE302Fall2008sanghavi]]
 
*[[Problem 3 - Katie Pekkarinen_ECE302Fall2008sanghavi]]
 
*[[Problem 3 - Katie Pekkarinen_ECE302Fall2008sanghavi]]
Line 46: Line 56:
 
*[[Problem 4 - Shao-Fu Shih_ECE302Fall2008sanghavi]]
 
*[[Problem 4 - Shao-Fu Shih_ECE302Fall2008sanghavi]]
 
*[[Problem 4 - Junzhe Geng_ECE302Fall2008sanghavi]]
 
*[[Problem 4 - Junzhe Geng_ECE302Fall2008sanghavi]]
 +
----
 +
[[Main_Page_ECE302Fall2008sanghavi|Back to ECE302 Fall 2008 Prof. Sanghavi]]

Latest revision as of 11:50, 22 November 2011


Instructions

Homework 9 can be downloaded here on the ECE 302 course website.

Problem 1: Imperfect camera

A photodetector has a probability $ p $ of capturing each photon incident on it. A light source is exposed to the detector, and a million photons are captured. What is the ML estimate of the number of photons actually incident on it?

Problem 2: Imperfect Radar

A radar works by transmitting a pulse, and seeing if there is an echo. Ideally, an echo means object is present, and no echo means no object. However, some echoes might get lost, and others may be generated due to other surfaces. To improve accuracy, a radar transmits $ n $ pulses, where $ n $ is a fixed number, and sees how many echoes it gets. It then makes a decision based on this number.

Let $ p_1 $ be the probability of an echo for a single pulse when there is no object, and $ p_2 $ be the probability when there is an object. Assume $ p_1 < p_2 $. What is the max-likelihood estimation rule for whether the object is present or absent?


Problem 3: Exponential Parameter Estimation

The parameter of an exponential random variable has to be estimated from one sample. What is the ML estimator? Is it unbiased?

Problem 4: Uniform Parameter Estimation

$ X $ is known to be a uniform random variable, with range $ [-a,a] $. However, the parameter $ a \geq 0 $ is unknown, and has to be estimated from $ n $ samples. What is the ML estimator? Is it unbiased?


Back to ECE302 Fall 2008 Prof. Sanghavi

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett