(New page: Let the signal '''<math>x(t) = e^{-at}u(t)</math>'''. The Fourier transform '''<math>X(\omega)</math>''' converges for '''<math>a > 0</math>''' and is given by: <math>X(\omega) = \int_{-...)
 
 
Line 1: Line 1:
 +
[[Category:ECE301]]
 +
[[Category:Fourier transform]]
 +
[[Category:Laplace transform]]
 +
[[Category:relation between Laplace transform and Fourier transform]]
 +
[[Category:problem solving]]
 +
[[Category:ECE301Fall2008mboutin]]
 +
 +
=Comparing the Fourier transform and the Laplace transform of <math>x(t) = e^{-at}u(t)</math>=
 +
 
Let the signal '''<math>x(t) = e^{-at}u(t)</math>'''.  The Fourier transform '''<math>X(\omega)</math>''' converges for '''<math>a > 0</math>''' and is given by:
 
Let the signal '''<math>x(t) = e^{-at}u(t)</math>'''.  The Fourier transform '''<math>X(\omega)</math>''' converges for '''<math>a > 0</math>''' and is given by:
  
Line 14: Line 23:
 
By comparing with (1) above, this last equation is the Fourier transform of '''<math>e^{-(\sigma + a)t}u(t)</math>'''
 
By comparing with (1) above, this last equation is the Fourier transform of '''<math>e^{-(\sigma + a)t}u(t)</math>'''
  
<math>\Rightarrow X(\sigma + j\omega) = frac{1}{(\sigma + a) + j\omega}, \sigma + a > 0</math>
+
<math>\Rightarrow X(\sigma + j\omega) = \frac{1}{(\sigma + a) + j\omega}, \sigma + a > 0</math>
  
 
since '''<math>^{s = \sigma + j\omega}</math>''' and <math>\sigma = \mathbb{R} (s)</math>
 
since '''<math>^{s = \sigma + j\omega}</math>''' and <math>\sigma = \mathbb{R} (s)</math>
Line 27: Line 36:
  
 
<math>X(s) = \frac{1}{s}, \mathbb{R} (s) > 0 </math>
 
<math>X(s) = \frac{1}{s}, \mathbb{R} (s) > 0 </math>
 +
----
 +
[[Homework_10_ECE301Fall2008mboutin|Back to HW10]]
 +
 +
[[Main_Page_ECE301Fall2008mboutin|Back to ECE301 Fall 2008, Prof. Boutin]]

Latest revision as of 06:33, 18 January 2013


Comparing the Fourier transform and the Laplace transform of $ x(t) = e^{-at}u(t) $

Let the signal $ x(t) = e^{-at}u(t) $. The Fourier transform $ X(\omega) $ converges for $ a > 0 $ and is given by:

$ X(\omega) = \int_{-\infty}^{\infty} e^{-at}u(t)e^{-j\omega t} \, dt = \int_{0}^{\infty} e^{-at}e^{-j\omega t} \, dt = \frac{1}{j\omega + a}, a > 0 $ (1)

the Laplace transform is:


$ X(s) = \int_{-\infty}^{\infty} e^{-at}u(t)e^{-st} \, dt = \int_{0}^{\infty} e^{-(s + a)t} \, dt $

with $ s = \sigma + j\omega $

$ X(\sigma + j\omega) = \int_{0}^{\infty} e^{-(\sigma + a)t} e^{-j\omega t} \, dt $

By comparing with (1) above, this last equation is the Fourier transform of $ e^{-(\sigma + a)t}u(t) $

$ \Rightarrow X(\sigma + j\omega) = \frac{1}{(\sigma + a) + j\omega}, \sigma + a > 0 $

since $ ^{s = \sigma + j\omega} $ and $ \sigma = \mathbb{R} (s) $

$ X(s) = frac{1}{s + a}, \mathbb{R} (S) > -a $

that is,

$ e^{-at}u(t) \xrightarrow{\mathcal{L}} \frac{1}{s + a}, \mathbb{R}(s) > -a $

for example, for $ a = 0, x(t) $ is the unit step with Laplace transform

$ X(s) = \frac{1}{s}, \mathbb{R} (s) > 0 $


Back to HW10

Back to ECE301 Fall 2008, Prof. Boutin

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett