(New page: Let the signal '''<math>x(t) = e^{-at}u(t)</math>'''. The Fourier transform '''<math>X(\omega)</math>''' converges for '''<math>a > 0</math>''' and is given by: <math>X(\omega) = \int_{-...) |
|||
Line 1: | Line 1: | ||
+ | [[Category:ECE301]] | ||
+ | [[Category:Fourier transform]] | ||
+ | [[Category:Laplace transform]] | ||
+ | [[Category:relation between Laplace transform and Fourier transform]] | ||
+ | [[Category:problem solving]] | ||
+ | [[Category:ECE301Fall2008mboutin]] | ||
+ | |||
+ | =Comparing the Fourier transform and the Laplace transform of <math>x(t) = e^{-at}u(t)</math>= | ||
+ | |||
Let the signal '''<math>x(t) = e^{-at}u(t)</math>'''. The Fourier transform '''<math>X(\omega)</math>''' converges for '''<math>a > 0</math>''' and is given by: | Let the signal '''<math>x(t) = e^{-at}u(t)</math>'''. The Fourier transform '''<math>X(\omega)</math>''' converges for '''<math>a > 0</math>''' and is given by: | ||
Line 14: | Line 23: | ||
By comparing with (1) above, this last equation is the Fourier transform of '''<math>e^{-(\sigma + a)t}u(t)</math>''' | By comparing with (1) above, this last equation is the Fourier transform of '''<math>e^{-(\sigma + a)t}u(t)</math>''' | ||
− | <math>\Rightarrow X(\sigma + j\omega) = frac{1}{(\sigma + a) + j\omega}, \sigma + a > 0</math> | + | <math>\Rightarrow X(\sigma + j\omega) = \frac{1}{(\sigma + a) + j\omega}, \sigma + a > 0</math> |
since '''<math>^{s = \sigma + j\omega}</math>''' and <math>\sigma = \mathbb{R} (s)</math> | since '''<math>^{s = \sigma + j\omega}</math>''' and <math>\sigma = \mathbb{R} (s)</math> | ||
Line 27: | Line 36: | ||
<math>X(s) = \frac{1}{s}, \mathbb{R} (s) > 0 </math> | <math>X(s) = \frac{1}{s}, \mathbb{R} (s) > 0 </math> | ||
+ | ---- | ||
+ | [[Homework_10_ECE301Fall2008mboutin|Back to HW10]] | ||
+ | |||
+ | [[Main_Page_ECE301Fall2008mboutin|Back to ECE301 Fall 2008, Prof. Boutin]] |
Latest revision as of 06:33, 18 January 2013
Comparing the Fourier transform and the Laplace transform of $ x(t) = e^{-at}u(t) $
Let the signal $ x(t) = e^{-at}u(t) $. The Fourier transform $ X(\omega) $ converges for $ a > 0 $ and is given by:
$ X(\omega) = \int_{-\infty}^{\infty} e^{-at}u(t)e^{-j\omega t} \, dt = \int_{0}^{\infty} e^{-at}e^{-j\omega t} \, dt = \frac{1}{j\omega + a}, a > 0 $ (1)
the Laplace transform is:
$ X(s) = \int_{-\infty}^{\infty} e^{-at}u(t)e^{-st} \, dt = \int_{0}^{\infty} e^{-(s + a)t} \, dt $
with $ s = \sigma + j\omega $
$ X(\sigma + j\omega) = \int_{0}^{\infty} e^{-(\sigma + a)t} e^{-j\omega t} \, dt $
By comparing with (1) above, this last equation is the Fourier transform of $ e^{-(\sigma + a)t}u(t) $
$ \Rightarrow X(\sigma + j\omega) = \frac{1}{(\sigma + a) + j\omega}, \sigma + a > 0 $
since $ ^{s = \sigma + j\omega} $ and $ \sigma = \mathbb{R} (s) $
$ X(s) = frac{1}{s + a}, \mathbb{R} (S) > -a $
that is,
$ e^{-at}u(t) \xrightarrow{\mathcal{L}} \frac{1}{s + a}, \mathbb{R}(s) > -a $
for example, for $ a = 0, x(t) $ is the unit step with Laplace transform
$ X(s) = \frac{1}{s}, \mathbb{R} (s) > 0 $