(26 intermediate revisions by the same user not shown)
Line 5: Line 5:
 
<font size="4"> Communication Networks Signal and Image processing (CS) </font>
 
<font size="4"> Communication Networks Signal and Image processing (CS) </font>
  
<font size="4"> [[QE637_sol2013|Question 5, August 2013(Published on May 2017)]],</font>  
+
<font size="4"> [[QE637_sol2013|Question 5, August 2013(Published on May 2017)]]</font>
 +
</center>  
  
 
<font size="4">[[ QE637_sol2013_Q1 | Problem 1]],[[ QE637_sol2013_Q2 |2]]</font>  
 
<font size="4">[[ QE637_sol2013_Q1 | Problem 1]],[[ QE637_sol2013_Q2 |2]]</font>  
</center>
 
  
 
----
 
----
Line 15: Line 15:
  
 
a)  
 
a)  
Since <math>{{f}_{k}}(\lambda ),\ for\ k=0,\ 1,\ 2</math>$ are the spectral response functions for the three color outputs of a color camera, and the negative spectrum can’t be produced, they must be nonnegative.
 
  
b) The CIE color matching functions are not always positive. This is the case because, to match some reference color that is too saturated, colors have to be subtracted from the <span class="texhtml">''R'',''G'',</span> and <span class="texhtml">''B''</span> primaries. This results in negative values in tristimulus values r, g, and b. So the color matching functions at the corresponding wavelength have negative values.  
+
Since <math>{{f}_{k}}(\lambda ),\ for\ k=0,\ 1,\ 2</math> are the spectral response functions for the three color outputs of a color camera, and the negative spectrum can’t be produced, they must be nonnegative.
  
c) <br> <math>\left[ {\begin{array}{*{20}{c}}
+
b)  
F_1\\
+
F_2\\
+
F_3
+
\end{array}} \right]
+
=
+
{\begin{array}{*{20}{c}}
+
\int_{-\infty}^{\infty}
+
\end{array}}
+
\left[ {\begin{array}{*{20}{c}}
+
f_1(\lambda)\\
+
f_1(\lambda)\\
+
f_1(\lambda)
+
\end{array}} \right]
+
I(\lambda)d\lambda
+
  
= {\begin{array}{*{20}{c}}
+
Since <math>{{r}_{0}}(\lambda ),\ {{g}_{0}}(\lambda ),\ and\ {{b}_{0}}(\lambda )</math> are the CIE color matching functions, they can be both positive and negative. The color matching function are given by
\int_{-\infty}^{\infty}  
+
<center>
\end{array}}  
+
<math>\left\{ \begin{matrix}
M
+
  {{r}_{0}}(\lambda )={{r}^{+}}-{{r}^{-}}  \\
\left[ {\begin{array}{*{20}{c}}
+
  {{g}_{0}}(\lambda )={{g}^{+}}-{{g}^{-}}  \\
r_0(\lambda)\\
+
  {{b}_{0}}(\lambda )=={{b}^{+}}-{{b}^{-}}  \\
g_0(\lambda)\\
+
\end{matrix} \right.</math>
b_0(\lambda)
+
</center>
\end{array}} \right]
+
where <math>{{r}^{+}},\ {{r}^{-}},\ {{g}^{+}},\ {{g}^{-}},\ {{b}^{+}},\ {{b}^{-}}</math>are the response to photons and must be positive, while the color matching function can be negative to produce a saturated color.
I(\lambda)d\lambda
+
  
= M
 
{\begin{array}{*{20}{c}}
 
\int_{-\infty}^{\infty}
 
\end{array}}
 
\left[ {\begin{array}{*{20}{c}}
 
r_0(\lambda)\\
 
g_0(\lambda)\\
 
b_0(\lambda)
 
\end{array}} \right]
 
I(\lambda)d\lambda
 
  
= M
+
c)
\left[ {\begin{array}{*{20}{c}}
+
r\\
+
g\\
+
b
+
\end{array}} \right]</math>
+
  
So that, <span class="texhtml">[''r'',''g'',''b'']<sup>''t''</sup> = ''M''<sup> − 1</sup>[''F''<sub>1</sub>,''F''<sub>2</sub>,''F''<sub>3</sub>]</span>. <br>
+
<math>\begin{align}
 +
  & F=\left[ \begin{matrix}
 +
  {{F}_{1}}  \\
 +
  {{F}_{2}}  \\
 +
  {{F}_{3}}  \\
 +
\end{matrix} \right]=\int\limits_{-\infty }^{\infty }{\left[ \begin{matrix}
 +
  {{f}_{1}}(\lambda )  \\
 +
  {{f}_{2}}(\lambda )  \\
 +
  {{f}_{3}}(\lambda )  \\
 +
\end{matrix} \right]}\ I(\lambda )\ d\lambda =\int\limits_{-\infty }^{\infty }{\left( M\left[ \begin{matrix}
 +
  {{r}_{0}}(\lambda )  \\
 +
  {{g}_{0}}(\lambda )  \\
 +
  {{b}_{0}}(\lambda )  \\
 +
\end{matrix} \right] \right)}\ I(\lambda )\ d\lambda=M\left( \int\limits_{-\infty }^{\infty }{\left[ \begin{matrix}
 +
  {{r}_{0}}(\lambda )  \\
 +
  {{g}_{0}}(\lambda )  \\
 +
  {{b}_{0}}(\lambda )  \\
 +
\end{matrix} \right]}\ I(\lambda )\ d\lambda  \right)=M\left[ \begin{matrix}
 +
  r  \\
 +
  g  \\
 +
  b  \\
 +
\end{matrix} \right]\ \\
 +
& \Rightarrow\ \left[ \begin{matrix}
 +
  r  \\
 +
  g  \\
 +
  b  \\
 +
\end{matrix} \right]={{M}^{-1}}\left[ \begin{matrix}
 +
  {{F}_{1}}  \\
 +
  {{F}_{2}}  \\
 +
  {{F}_{3}}  \\
 +
\end{matrix} \right]={{M}^{-1}}_{{}}^{{}}{{F}^{t}} \\
 +
\end{align}
 +
</math>  
  
<span style="color:green"> missed transpose sign on F. It should be <span class="texhtml">[''r'',''g'',''b'']<sup>''t''</sup> = ''M''<sup> − 1</sup>[''F''<sub>1</sub>,''F''<sub>2</sub>,''F''<sub>3</sub>]<sup>''t''</sup></span>.
+
d)
 +
 
 +
Yes, they do exist, like CIE XYZ. CIE XYZ is defined in terms of CIE RGB so that
 +
<math>\left[ \begin{matrix}
 +
  {{x}_{0}}(\lambda )  \\
 +
  {{y}_{0}}(\lambda )  \\
 +
  {{z}_{0}}(\lambda )  \\
 +
\end{matrix} \right]=M\ \left[ \begin{matrix}
 +
  {{r}_{0}}(\lambda )  \\
 +
  {{g}_{0}}(\lambda )  \\
 +
  {{b}_{0}}(\lambda )  \\
 +
\end{matrix} \right],\ where\ M=\left[ \begin{matrix}
 +
  0.490 & 0.310 & 0.200  \\
 +
  0.177 & 0.813 & 0.010  \\
 +
  0.000 & 0.010 & 0.990  \\
 +
\end{matrix} \right]</math> and
 +
<math>\left\{ \begin{matrix}
 +
  {{x}_{0}}(\lambda )\ge 0  \\
 +
  {{y}_{0}}(\lambda )\ge 0  \\
 +
  {{z}_{0}}(\lambda )\ge 0  \\
 +
\end{matrix} \right.</math>
  
  
</span>
 
<br>
 
d) It exists. CIE XYZ is one example. However, XYZ has problems with its primaries, since, the primary colors are imaginary.
 
  
 
== Solution 2:  ==
 
== Solution 2:  ==
  
a)&nbsp;<span class="texhtml">''f''<sub>1</sub>(λ)</span>,&nbsp;<span class="texhtml">''f''<sub>2</sub>(λ)</span>&nbsp;and&nbsp;<span class="texhtml">''f''<sub>3</sub>(λ)</span>&nbsp;are the spectral functions for the three color outputs of color camera. It must be positive because we cannot produce negative spectrum.&nbsp;
+
a)
  
b) No.&nbsp;<span class="texhtml">''r''<sub>''o''</sub>(λ),''g''<sub>''o''</sub>(λ)''a''''n''''d''''b'''''<b><sub>''o''</sub>(λ)</b></span>'''&nbsp;are CIE color matching. It takes negative value in order to substract some color to be saturated.&nbsp; '''
+
Because for real pixels, measured energy from incident photons is always positive.
  
c)
+
<span style="color:green"> The student should mention the non-negativity inherence of the spectrum.</span>
  
&nbsp;<math>\left[ {\begin{array}{*{20}{c}}
+
b) <math>{{r}_{0}}(\lambda ),\ {{g}_{0}}(\lambda ),\ and\ {{b}_{0}}(\lambda )</math>are the CIE color matching functions, and therefore can be negative. They go negative to match certain reference colors which are beyond the r, g, b primaries.
F_1\\
+
F_2\\
+
F_3
+
\end{array}} \right]
+
=
+
{\begin{array}{*{20}{c}}
+
\int_{-\infty}^{\infty}
+
\end{array}}
+
\left[ {\begin{array}{*{20}{c}}
+
f_1(\lambda)\\
+
f_2(\lambda)\\
+
f_3(\lambda)
+
\end{array}} \right]
+
I(\lambda)d\lambda
+
  
= {\begin{array}{*{20}{c}}
+
<span style="color:green"> The student should mention the saturated colors, which need negative color matching function .</span>
\int_{-\infty}^{\infty}
+
\end{array}}
+
M
+
\left[ {\begin{array}{*{20}{c}}
+
r_0(\lambda)\\
+
g_0(\lambda)\\
+
b_0(\lambda)
+
\end{array}} \right]
+
I(\lambda)d\lambda
+
  
= M
+
c)  
{\begin{array}{*{20}{c}}
+
\int_{-\infty}^{\infty}
+
\end{array}}
+
\left[ {\begin{array}{*{20}{c}}
+
r_0(\lambda)\\
+
g_0(\lambda)\\
+
b_0(\lambda)
+
\end{array}} \right]
+
I(\lambda)d\lambda
+
  
  = M
+
<math>\begin{align}
\left[ {\begin{array}{*{20}{c}}
+
  & \int\limits_{-\infty }^{\infty }{\left[ \begin{matrix}
r\\
+
  {{f}_{1}}(\lambda ) \\
g\\
+
  {{f}_{2}}(\lambda )  \\
b
+
  {{f}_{3}}(\lambda )  \\
\end{array}} \right]</math>  
+
\end{matrix} \right]}\left[ \begin{matrix}
 +
  I(\lambda )d\lambda  & I(\lambda )d\lambda  & I(\lambda )d\lambda  \\
 +
\end{matrix} \right]=\int\limits_{-\infty }^{\infty }{M\left[ \begin{matrix}
 +
  {{r}_{0}}(\lambda )  \\
 +
  {{g}_{0}}(\lambda )  \\
 +
  {{b}_{0}}(\lambda )  \\
 +
\end{matrix} \right]}\left[ \begin{matrix}
 +
  I(\lambda )d\lambda  & I(\lambda )d\lambda  & I(\lambda )d\lambda  \\
 +
\end{matrix} \right] \\
 +
& \Rightarrow \left[ \begin{matrix}
 +
  \int\limits_{-\infty }^{\infty }{{{f}_{1}}(\lambda )I(\lambda )d\lambda }  \\
 +
  \int\limits_{-\infty }^{\infty }{{{f}_{2}}(\lambda )I(\lambda )d\lambda }  \\
 +
  \int\limits_{-\infty }^{\infty }{{{f}_{3}}(\lambda )I(\lambda )d\lambda }  \\
 +
\end{matrix} \right]=M\left[ \begin{matrix}
 +
  \int\limits_{-\infty }^{\infty }{{{r}_{0}}(\lambda )I(\lambda )d\lambda }  \\
 +
  \int\limits_{-\infty }^{\infty }{{{g}_{0}}(\lambda )I(\lambda )d\lambda }  \\
 +
  \int\limits_{-\infty }^{\infty }{{{b}_{0}}(\lambda )I(\lambda )d\lambda }  \\
 +
\end{matrix} \right]\Rightarrow \left[ \begin{matrix}
 +
  {{F}_{1}}  \\
 +
  {{F}_{2}}  \\
 +
  {{F}_{3}}  \\
 +
\end{matrix} \right]=M\left[ \begin{matrix}
 +
  r  \\
 +
  g  \\
 +
  b  \\
 +
\end{matrix} \right]\Rightarrow \left[ \begin{matrix}
 +
  r  \\
 +
  g  \\
 +
  b  \\
 +
\end{matrix} \right]={{M}^{-1}}\left[ \begin{matrix}
 +
  {{F}_{1}}  \\
 +
  {{F}_{2}}  \\
 +
  {{F}_{3}}  \\
 +
\end{matrix} \right] \\
 +
\end{align}
 +
</math>  
  
 
d)  
 
d)  
  
Yes. They exist. If there is a matrix M that exist to satisfy this equation &nbsp;<math>\left[ {\begin{array}{*{20}{c}}
+
<math>
f_1(\lambda)\\
+
\begin{align}
f_2(\lambda)\\
+
\left[ \begin{matrix}
f_3(\lambda)
+
  r  \\
\end{array}} \right]
+
  g  \\
= M \left[ {\begin{array}{*{20}{c}}
+
  b  \\
r_0(\lambda)\\
+
\end{matrix} \right]={{M}^{-1}}\left[ \begin{matrix}
g_0(\lambda)\\
+
  {X} \\
b_0(\lambda)
+
  {Y} \\
\end{array}} \right]</math>.&nbsp;
+
  {Z}  \\
 +
\end{matrix} \right] \\  
 +
\end{align}
 +
</math>
 +
where X, Y, Z are the xyz tristimulus values (always positive):
 +
<math> X=\frac{x}{x+y+z},Y=\frac{y}{x+y+z},Z=\frac{z}{x+y+z}</math>  
  
<span style="color:green"> The student can be more specific on the example of such case. I am not sure what is a good example either. Will consult Professor to figure it out.</span>
+
<span style="color:green"> The three written formulas for tristimulus values are not correct, actually chromaticity ccordinates can be written as a function of tristimulus values (X, Y, Z) as follows: <math> x=\frac{X}{X+Y+Z},y=\frac{Y}{X+Y+Z},z=\frac{Z}{X+Y+Z}</math>. </span>
 +
 
 +
<span style="color:green">Also, the student should describe the CIE XYZ system. </span>
  
 
----
 
----
Line 145: Line 173:
 
=== Related Problem  ===
 
=== Related Problem  ===
  
1. In a color matching experiment, the three primaries R, G, B are used to match the color of a pure spectral component at wavelength <span class="texhtml">λ</span>. Here the color matching allows for color to be subtracted from the reference color. At each wavelength <span class="texhtml">λ</span>, the matching color is given by  
+
In a color matching experiment, the three primaries R, G, B are used to match the color of a pure spectral component at wavelength <math>\lambda</math>. (Assume that the color matching allows for color to be subtracted from the reference in the standard manner described in class.)
 
+
At each wavelength <math>\lambda </math>, the matching color is given by  
<math>
+
\left[ {\begin{array}{*{20}{c}}
+
R, G, B
+
\end{array}} \right]
+
\left[ {\begin{array}{*{20}{c}}
+
r(\lambda)\\
+
g(\lambda)\\
+
b(\lambda)
+
\end{array}} \right]
+
</math>
+
 
+
where <span class="texhtml">''r''<sub>(</sub>λ)</span>, <span class="texhtml">''g''<sub>(</sub>λ)</span>, and <span class="texhtml">''b''<sub>(</sub>λ)</span> are normalized to 1.
+
 
+
Further define the white point
+
 
+
<math> W = 
+
\left[ {\begin{array}{*{20}{c}}
+
R, G, B
+
\end{array}} \right]
+
\left[ {\begin{array}{*{20}{c}}
+
r_w\\
+
g_w\\
+
b_w
+
\end{array}} \right]
+
</math>
+
  
Let <span class="texhtml">''I''(λ)</span> be the light reflected from a surface.
+
<center><math>\left[ \begin{matrix}
 +
  R, & G, & B  \\
 +
\end{matrix} \right]\left[ \begin{matrix}
 +
  r(\lambda ) \\
 +
  g(\lambda )  \\
 +
  b(\lambda )  \\
 +
\end{matrix} \right]</math></center>
 +
where
 +
<center><math>\begin{align}
 +
  & 1=\int\limits_{0}^{\infty }{r(\lambda )d\lambda } \\
 +
& 1=\int\limits_{0}^{\infty }{g(\lambda )d\lambda } \\
 +
& 1=\int\limits_{0}^{\infty }{b(\lambda )d\lambda } \\
 +
\end{align}</math>
 +
</center>
  
a) Calculate <span class="texhtml">(''r''<sub>''e''</sub>,''g''<sub>''e''</sub>,''b''<sub>''e''</sub>)</span> the tristimulus values for the spectral distribution <span class="texhtml">''I''(λ)</span> using primaries <span class="texhtml">''R'',''G'',''B''</span> and an equal energy white point.
+
Further define the white point
  
b) Calculate <span class="texhtml">(''r''<sub>''c''</sub>,''g''<sub>''c''</sub>,''b''<sub>''c''</sub>)</span> the tristimulus values for the spectral distribution <span class="texhtml">''I''(λ)</span> using primaries <span class="texhtml">''R'',''G'',''B''</span> and white point <span class="texhtml">(''r''<sub>''w''</sub>,''g''<sub>''w''</sub>,''b''<sub>''w''</sub>)</span>.  
+
<center>
 +
<math>W=\left[ \begin{matrix}
 +
  R, & G, & B \\
 +
\end{matrix} \right]\left[ \begin{matrix}
 +
  {{r}_{w}}  \\
 +
  {{g}_{w}}  \\
 +
  {{b}_{w}}  \\
 +
\end{matrix} \right]</math>.
 +
</center>
 +
Let <math>I(\lambda)</math> be the light reflected from a surface.
  
(Refer to ECE637 2004 Final Problem 4.)  
+
a) Calculate <math>({{r}_{e}}, {{g}_{e}}, {{b}_{e}})</math> the tristimulus values for the spectral distribution <math>I(\lambda)</math> using primaries R, G, B and an equal energy white point.
  
2. Consider the two channel sensors with response function&nbsp;<span class="texhtml">''Q''<sub>''S''</sub>(λ)&nbsp;''a'''n'''d&nbsp;'''Q'''''<b><sub>''L''</sub>(λ). Suppose that we have two primaries&nbsp;<span class="texhtml">''P''<sub>''L''</sub>(λ) = σ(λ − 0.6)</span>&nbsp;and&nbsp;<span class="texhtml">''P''<sub>''S''</sub>(λ) = σ(λ − 0.5)</span>.</b></span>
+
b) Calculate <math>({{r}_{c}}, {{g}_{c}}, {{b}_{c}})</math> the tristimulus values for the spectral distribution <math>I(\lambda)</math> using primaries R, G, B and white point <math>({{r}_{w}}, {{g}_{w}}, {{b}_{w}})</math>.
  
<span class="texhtml">'''[[Image:QE637 2013 P2 F1.PNG]]'''</span>  
+
c) Calculate <math>({{r}_{\gamma }}, {{g}_{\gamma }}, {{b}_{\gamma }})</math> the gamma corrected tristimulus values for the spectral distribution <math>I(\lambda)</math> using primaries R, G, B and white point <math>({{r}_{w}}, {{g}_{w}}, {{b}_{w}})</math>, and <math>\gamma =2.2</math>.
  
Find the color matching function&nbsp;<math>\bar{l}(\lambda)</math>&nbsp;and&nbsp;<math>\bar{s}(\lambda)</math>&nbsp;for these two primaries.
 
  
(Refer to ECE638 <u>[https://engineering.purdue.edu/~ece638/lectures/03.%20Trichromatic%20theory%20-%202011.pdf Lecture note 3: Trichromatic theory of color].</u>)  
+
(Refer to <u>[https://engineering.purdue.edu/~bouman/ece637/previous/ece637S2004/exams/final/exam.pdf ECE 637 Spring 2004 Final Exam Problem 4].</u>)  
  
 
----
 
----

Latest revision as of 20:06, 2 May 2017


ECE Ph.D. Qualifying Exam

Communication Networks Signal and Image processing (CS)

Question 5, August 2013(Published on May 2017)

Problem 1,2


Solution 1:

a)

Since $ {{f}_{k}}(\lambda ),\ for\ k=0,\ 1,\ 2 $ are the spectral response functions for the three color outputs of a color camera, and the negative spectrum can’t be produced, they must be nonnegative.

b)

Since $ {{r}_{0}}(\lambda ),\ {{g}_{0}}(\lambda ),\ and\ {{b}_{0}}(\lambda ) $ are the CIE color matching functions, they can be both positive and negative. The color matching function are given by

$ \left\{ \begin{matrix} {{r}_{0}}(\lambda )={{r}^{+}}-{{r}^{-}} \\ {{g}_{0}}(\lambda )={{g}^{+}}-{{g}^{-}} \\ {{b}_{0}}(\lambda )=={{b}^{+}}-{{b}^{-}} \\ \end{matrix} \right. $

where $ {{r}^{+}},\ {{r}^{-}},\ {{g}^{+}},\ {{g}^{-}},\ {{b}^{+}},\ {{b}^{-}} $are the response to photons and must be positive, while the color matching function can be negative to produce a saturated color.


c)

$ \begin{align} & F=\left[ \begin{matrix} {{F}_{1}} \\ {{F}_{2}} \\ {{F}_{3}} \\ \end{matrix} \right]=\int\limits_{-\infty }^{\infty }{\left[ \begin{matrix} {{f}_{1}}(\lambda ) \\ {{f}_{2}}(\lambda ) \\ {{f}_{3}}(\lambda ) \\ \end{matrix} \right]}\ I(\lambda )\ d\lambda =\int\limits_{-\infty }^{\infty }{\left( M\left[ \begin{matrix} {{r}_{0}}(\lambda ) \\ {{g}_{0}}(\lambda ) \\ {{b}_{0}}(\lambda ) \\ \end{matrix} \right] \right)}\ I(\lambda )\ d\lambda=M\left( \int\limits_{-\infty }^{\infty }{\left[ \begin{matrix} {{r}_{0}}(\lambda ) \\ {{g}_{0}}(\lambda ) \\ {{b}_{0}}(\lambda ) \\ \end{matrix} \right]}\ I(\lambda )\ d\lambda \right)=M\left[ \begin{matrix} r \\ g \\ b \\ \end{matrix} \right]\ \\ & \Rightarrow\ \left[ \begin{matrix} r \\ g \\ b \\ \end{matrix} \right]={{M}^{-1}}\left[ \begin{matrix} {{F}_{1}} \\ {{F}_{2}} \\ {{F}_{3}} \\ \end{matrix} \right]={{M}^{-1}}_{{}}^{{}}{{F}^{t}} \\ \end{align} $

d)

Yes, they do exist, like CIE XYZ. CIE XYZ is defined in terms of CIE RGB so that $ \left[ \begin{matrix} {{x}_{0}}(\lambda ) \\ {{y}_{0}}(\lambda ) \\ {{z}_{0}}(\lambda ) \\ \end{matrix} \right]=M\ \left[ \begin{matrix} {{r}_{0}}(\lambda ) \\ {{g}_{0}}(\lambda ) \\ {{b}_{0}}(\lambda ) \\ \end{matrix} \right],\ where\ M=\left[ \begin{matrix} 0.490 & 0.310 & 0.200 \\ 0.177 & 0.813 & 0.010 \\ 0.000 & 0.010 & 0.990 \\ \end{matrix} \right] $ and $ \left\{ \begin{matrix} {{x}_{0}}(\lambda )\ge 0 \\ {{y}_{0}}(\lambda )\ge 0 \\ {{z}_{0}}(\lambda )\ge 0 \\ \end{matrix} \right. $


Solution 2:

a)

Because for real pixels, measured energy from incident photons is always positive.

The student should mention the non-negativity inherence of the spectrum.

b) $ {{r}_{0}}(\lambda ),\ {{g}_{0}}(\lambda ),\ and\ {{b}_{0}}(\lambda ) $are the CIE color matching functions, and therefore can be negative. They go negative to match certain reference colors which are beyond the r, g, b primaries.

The student should mention the saturated colors, which need negative color matching function .

c)

$ \begin{align} & \int\limits_{-\infty }^{\infty }{\left[ \begin{matrix} {{f}_{1}}(\lambda ) \\ {{f}_{2}}(\lambda ) \\ {{f}_{3}}(\lambda ) \\ \end{matrix} \right]}\left[ \begin{matrix} I(\lambda )d\lambda & I(\lambda )d\lambda & I(\lambda )d\lambda \\ \end{matrix} \right]=\int\limits_{-\infty }^{\infty }{M\left[ \begin{matrix} {{r}_{0}}(\lambda ) \\ {{g}_{0}}(\lambda ) \\ {{b}_{0}}(\lambda ) \\ \end{matrix} \right]}\left[ \begin{matrix} I(\lambda )d\lambda & I(\lambda )d\lambda & I(\lambda )d\lambda \\ \end{matrix} \right] \\ & \Rightarrow \left[ \begin{matrix} \int\limits_{-\infty }^{\infty }{{{f}_{1}}(\lambda )I(\lambda )d\lambda } \\ \int\limits_{-\infty }^{\infty }{{{f}_{2}}(\lambda )I(\lambda )d\lambda } \\ \int\limits_{-\infty }^{\infty }{{{f}_{3}}(\lambda )I(\lambda )d\lambda } \\ \end{matrix} \right]=M\left[ \begin{matrix} \int\limits_{-\infty }^{\infty }{{{r}_{0}}(\lambda )I(\lambda )d\lambda } \\ \int\limits_{-\infty }^{\infty }{{{g}_{0}}(\lambda )I(\lambda )d\lambda } \\ \int\limits_{-\infty }^{\infty }{{{b}_{0}}(\lambda )I(\lambda )d\lambda } \\ \end{matrix} \right]\Rightarrow \left[ \begin{matrix} {{F}_{1}} \\ {{F}_{2}} \\ {{F}_{3}} \\ \end{matrix} \right]=M\left[ \begin{matrix} r \\ g \\ b \\ \end{matrix} \right]\Rightarrow \left[ \begin{matrix} r \\ g \\ b \\ \end{matrix} \right]={{M}^{-1}}\left[ \begin{matrix} {{F}_{1}} \\ {{F}_{2}} \\ {{F}_{3}} \\ \end{matrix} \right] \\ \end{align} $

d)

$ \begin{align} \left[ \begin{matrix} r \\ g \\ b \\ \end{matrix} \right]={{M}^{-1}}\left[ \begin{matrix} {X} \\ {Y} \\ {Z} \\ \end{matrix} \right] \\ \end{align} $ where X, Y, Z are the xyz tristimulus values (always positive): $ X=\frac{x}{x+y+z},Y=\frac{y}{x+y+z},Z=\frac{z}{x+y+z} $

The three written formulas for tristimulus values are not correct, actually chromaticity ccordinates can be written as a function of tristimulus values (X, Y, Z) as follows: $ x=\frac{X}{X+Y+Z},y=\frac{Y}{X+Y+Z},z=\frac{Z}{X+Y+Z} $.

Also, the student should describe the CIE XYZ system.


Related Problem

In a color matching experiment, the three primaries R, G, B are used to match the color of a pure spectral component at wavelength $ \lambda $. (Assume that the color matching allows for color to be subtracted from the reference in the standard manner described in class.) At each wavelength $ \lambda $, the matching color is given by

$ \left[ \begin{matrix} R, & G, & B \\ \end{matrix} \right]\left[ \begin{matrix} r(\lambda ) \\ g(\lambda ) \\ b(\lambda ) \\ \end{matrix} \right] $

where

$ \begin{align} & 1=\int\limits_{0}^{\infty }{r(\lambda )d\lambda } \\ & 1=\int\limits_{0}^{\infty }{g(\lambda )d\lambda } \\ & 1=\int\limits_{0}^{\infty }{b(\lambda )d\lambda } \\ \end{align} $

Further define the white point

$ W=\left[ \begin{matrix} R, & G, & B \\ \end{matrix} \right]\left[ \begin{matrix} {{r}_{w}} \\ {{g}_{w}} \\ {{b}_{w}} \\ \end{matrix} \right] $.

Let $ I(\lambda) $ be the light reflected from a surface.

a) Calculate $ ({{r}_{e}}, {{g}_{e}}, {{b}_{e}}) $ the tristimulus values for the spectral distribution $ I(\lambda) $ using primaries R, G, B and an equal energy white point.

b) Calculate $ ({{r}_{c}}, {{g}_{c}}, {{b}_{c}}) $ the tristimulus values for the spectral distribution $ I(\lambda) $ using primaries R, G, B and white point $ ({{r}_{w}}, {{g}_{w}}, {{b}_{w}}) $.

c) Calculate $ ({{r}_{\gamma }}, {{g}_{\gamma }}, {{b}_{\gamma }}) $ the gamma corrected tristimulus values for the spectral distribution $ I(\lambda) $ using primaries R, G, B and white point $ ({{r}_{w}}, {{g}_{w}}, {{b}_{w}}) $, and $ \gamma =2.2 $.


(Refer to ECE 637 Spring 2004 Final Exam Problem 4.)


Back to ECE QE page:

Alumni Liaison

Recent Math PhD now doing a post-doctorate at UC Riverside.

Kuei-Nuan Lin