Line 15: Line 15:
  
 
a)  
 
a)  
 +
 
Since <math>{{f}_{k}}(\lambda ),\ for\ k=0,\ 1,\ 2</math> are the spectral response functions for the three color outputs of a color camera, and the negative spectrum can’t be produced, they must be nonnegative.
 
Since <math>{{f}_{k}}(\lambda ),\ for\ k=0,\ 1,\ 2</math> are the spectral response functions for the three color outputs of a color camera, and the negative spectrum can’t be produced, they must be nonnegative.
  
 
b)  
 
b)  
 +
 
Since <math>{{r}_{0}}(\lambda ),\ {{g}_{0}}(\lambda ),\ and\ {{b}_{0}}(\lambda )</math> are the CIE color matching functions, they can be both positive and negative. The color matching function are given by
 
Since <math>{{r}_{0}}(\lambda ),\ {{g}_{0}}(\lambda ),\ and\ {{b}_{0}}(\lambda )</math> are the CIE color matching functions, they can be both positive and negative. The color matching function are given by
 
<center>
 
<center>
Line 29: Line 31:
  
  
c) <br> <math>\begin{align}
+
c)  
 +
 
 +
<math>\begin{align}
 
   & F=\left[ \begin{matrix}
 
   & F=\left[ \begin{matrix}
 
   {{F}_{1}}  \\
 
   {{F}_{1}}  \\
Line 63: Line 67:
 
</math>  
 
</math>  
  
<span style="color:green"> missed transpose sign on F. It should be <span class="texhtml">[''r'',''g'',''b'']<sup>''t''</sup> = ''M''<sup> − 1</sup>[''F''<sub>1</sub>,''F''<sub>2</sub>,''F''<sub>3</sub>]<sup>''t''</sup></span>.
+
d)
  
 
</span>
 
<br>
 
d)
 
 
Yes, they do exist, like CIE XYZ. CIE XYZ is defined in terms of CIE RGB so that
 
Yes, they do exist, like CIE XYZ. CIE XYZ is defined in terms of CIE RGB so that
 
<math>\left[ \begin{matrix}
 
<math>\left[ \begin{matrix}
Line 88: Line 88:
  
 
a)
 
a)
 +
 
Because for real pixels, measured energy from incident photons is always positive.
 
Because for real pixels, measured energy from incident photons is always positive.
 +
 +
<span style="color:green"> The student should mention the non-negativity inherence of the spectrum.</span>
  
 
b) <math>{{r}_{0}}(\lambda ),\ {{g}_{0}}(\lambda ),\ and\ {{b}_{0}}(\lambda )</math>are the CIE color matching functions, and therefore can be negative. They go negative to match certain reference colors which are beyond the r, g, b primaries.
 
b) <math>{{r}_{0}}(\lambda ),\ {{g}_{0}}(\lambda ),\ and\ {{b}_{0}}(\lambda )</math>are the CIE color matching functions, and therefore can be negative. They go negative to match certain reference colors which are beyond the r, g, b primaries.
 +
 +
<span style="color:green"> The student should mention the saturated colors, which need negative color matching function .</span>
  
 
c)  
 
c)  
Line 151: Line 156:
 
\end{align}
 
\end{align}
 
</math>  
 
</math>  
where X, Y, Z are the xyzzy tristimulus values (always positive):
+
where X, Y, Z are the xyz tristimulus values (always positive):
 
<math> X=\frac{x}{x+y+z},Y=\frac{y}{x+y+z},Z=\frac{z}{x+y+z}</math>  
 
<math> X=\frac{x}{x+y+z},Y=\frac{y}{x+y+z},Z=\frac{z}{x+y+z}</math>  
  
<span style="color:green"> The student can be more specific on the example of such case. I am not sure what is a good example either. Will consult Professor to figure it out.</span>
+
<span style="color:green"> First of all tristimulus values are not always positive, they can be negative and the three written formulas of tristimulus values are not correct.</span>
  
 
----
 
----

Revision as of 18:15, 2 May 2017


ECE Ph.D. Qualifying Exam

Communication Networks Signal and Image processing (CS)

Question 5, August 2013(Published on May 2017)

Problem 1,2


Solution 1:

a)

Since $ {{f}_{k}}(\lambda ),\ for\ k=0,\ 1,\ 2 $ are the spectral response functions for the three color outputs of a color camera, and the negative spectrum can’t be produced, they must be nonnegative.

b)

Since $ {{r}_{0}}(\lambda ),\ {{g}_{0}}(\lambda ),\ and\ {{b}_{0}}(\lambda ) $ are the CIE color matching functions, they can be both positive and negative. The color matching function are given by

$ \left\{ \begin{matrix} {{r}_{0}}(\lambda )={{r}^{+}}-{{r}^{-}} \\ {{g}_{0}}(\lambda )={{g}^{+}}-{{g}^{-}} \\ {{b}_{0}}(\lambda )=={{b}^{+}}-{{b}^{-}} \\ \end{matrix} \right. $

where $ {{r}^{+}},\ {{r}^{-}},\ {{g}^{+}},\ {{g}^{-}},\ {{b}^{+}},\ {{b}^{-}} $are the response to photons and must be positive, while the color matching function can be negative to produce a saturated color.


c)

$ \begin{align} & F=\left[ \begin{matrix} {{F}_{1}} \\ {{F}_{2}} \\ {{F}_{3}} \\ \end{matrix} \right]=\int\limits_{-\infty }^{\infty }{\left[ \begin{matrix} {{f}_{1}}(\lambda ) \\ {{f}_{2}}(\lambda ) \\ {{f}_{3}}(\lambda ) \\ \end{matrix} \right]}\ I(\lambda )\ d\lambda =\int\limits_{-\infty }^{\infty }{\left( M\left[ \begin{matrix} {{r}_{0}}(\lambda ) \\ {{g}_{0}}(\lambda ) \\ {{b}_{0}}(\lambda ) \\ \end{matrix} \right] \right)}\ I(\lambda )\ d\lambda=M\left( \int\limits_{-\infty }^{\infty }{\left[ \begin{matrix} {{r}_{0}}(\lambda ) \\ {{g}_{0}}(\lambda ) \\ {{b}_{0}}(\lambda ) \\ \end{matrix} \right]}\ I(\lambda )\ d\lambda \right)=M\left[ \begin{matrix} r \\ g \\ b \\ \end{matrix} \right]\ \\ & \Rightarrow\ \left[ \begin{matrix} r \\ g \\ b \\ \end{matrix} \right]={{M}^{-1}}\left[ \begin{matrix} {{F}_{1}} \\ {{F}_{2}} \\ {{F}_{3}} \\ \end{matrix} \right]={{M}^{-1}}_{{}}^{{}}{{F}^{t}} \\ \end{align} $

d)

Yes, they do exist, like CIE XYZ. CIE XYZ is defined in terms of CIE RGB so that $ \left[ \begin{matrix} {{x}_{0}}(\lambda ) \\ {{y}_{0}}(\lambda ) \\ {{z}_{0}}(\lambda ) \\ \end{matrix} \right]=M\ \left[ \begin{matrix} {{r}_{0}}(\lambda ) \\ {{g}_{0}}(\lambda ) \\ {{b}_{0}}(\lambda ) \\ \end{matrix} \right],\ where\ M=\left[ \begin{matrix} 0.490 & 0.310 & 0.200 \\ 0.177 & 0.813 & 0.010 \\ 0.000 & 0.010 & 0.990 \\ \end{matrix} \right] $.


Solution 2:

a)

Because for real pixels, measured energy from incident photons is always positive.

The student should mention the non-negativity inherence of the spectrum.

b) $ {{r}_{0}}(\lambda ),\ {{g}_{0}}(\lambda ),\ and\ {{b}_{0}}(\lambda ) $are the CIE color matching functions, and therefore can be negative. They go negative to match certain reference colors which are beyond the r, g, b primaries.

The student should mention the saturated colors, which need negative color matching function .

c)

$ \begin{align} & \int\limits_{-\infty }^{\infty }{\left[ \begin{matrix} {{f}_{1}}(\lambda ) \\ {{f}_{2}}(\lambda ) \\ {{f}_{3}}(\lambda ) \\ \end{matrix} \right]}\left[ \begin{matrix} I(\lambda )d\lambda & I(\lambda )d\lambda & I(\lambda )d\lambda \\ \end{matrix} \right]=\int\limits_{-\infty }^{\infty }{M\left[ \begin{matrix} {{r}_{0}}(\lambda ) \\ {{g}_{0}}(\lambda ) \\ {{b}_{0}}(\lambda ) \\ \end{matrix} \right]}\left[ \begin{matrix} I(\lambda )d\lambda & I(\lambda )d\lambda & I(\lambda )d\lambda \\ \end{matrix} \right] \\ & \Rightarrow \left[ \begin{matrix} \int\limits_{-\infty }^{\infty }{{{f}_{1}}(\lambda )I(\lambda )d\lambda } \\ \int\limits_{-\infty }^{\infty }{{{f}_{2}}(\lambda )I(\lambda )d\lambda } \\ \int\limits_{-\infty }^{\infty }{{{f}_{3}}(\lambda )I(\lambda )d\lambda } \\ \end{matrix} \right]=M\left[ \begin{matrix} \int\limits_{-\infty }^{\infty }{{{r}_{0}}(\lambda )I(\lambda )d\lambda } \\ \int\limits_{-\infty }^{\infty }{{{g}_{0}}(\lambda )I(\lambda )d\lambda } \\ \int\limits_{-\infty }^{\infty }{{{b}_{0}}(\lambda )I(\lambda )d\lambda } \\ \end{matrix} \right]\Rightarrow \left[ \begin{matrix} {{F}_{1}} \\ {{F}_{2}} \\ {{F}_{3}} \\ \end{matrix} \right]=M\left[ \begin{matrix} r \\ g \\ b \\ \end{matrix} \right]\Rightarrow \left[ \begin{matrix} r \\ g \\ b \\ \end{matrix} \right]={{M}^{-1}}\left[ \begin{matrix} {{F}_{1}} \\ {{F}_{2}} \\ {{F}_{3}} \\ \end{matrix} \right] \\ \end{align} $

d)

$ \begin{align} \left[ \begin{matrix} r \\ g \\ b \\ \end{matrix} \right]={{M}^{-1}}\left[ \begin{matrix} {X} \\ {Y} \\ {Z} \\ \end{matrix} \right] \\ \end{align} $ where X, Y, Z are the xyz tristimulus values (always positive): $ X=\frac{x}{x+y+z},Y=\frac{y}{x+y+z},Z=\frac{z}{x+y+z} $

First of all tristimulus values are not always positive, they can be negative and the three written formulas of tristimulus values are not correct.


Related Problem

In a color matching experiment, the three primaries R, G, B are used to match the color of a pure spectral component at wavelength $ \lambda $. (Assume that the color matching allows for color to be subtracted from the reference in the standard manner described in class.) At each wavelength $ \lambda $, the matching color is given by

$ \left[ \begin{matrix} R, & G, & B \\ \end{matrix} \right]\left[ \begin{matrix} r(\lambda ) \\ g(\lambda ) \\ b(\lambda ) \\ \end{matrix} \right] $

where

$ \begin{align} & 1=\int\limits_{0}^{\infty }{r(\lambda )d\lambda } \\ & 1=\int\limits_{0}^{\infty }{g(\lambda )d\lambda } \\ & 1=\int\limits_{0}^{\infty }{b(\lambda )d\lambda } \\ \end{align} $

Further define the white point

$ W=\left[ \begin{matrix} R, & G, & B \\ \end{matrix} \right]\left[ \begin{matrix} {{r}_{w}} \\ {{g}_{w}} \\ {{b}_{w}} \\ \end{matrix} \right] $.

Let $ I(\lambda) $ be the light reflected from a surface.

a) Calculate $ ({{r}_{e}},\ {{g}_{e}},\ {{b}_{e}}) $ the tristimulus values for the spectral distribution $ I(\lambda) $ using primaries R, G, B and an equal energy white point.

b) Calculate $ ({{r}_{c}},\ {{g}_{c}},\ {{b}_{c}}) $ the tristimulus values for the spectral distribution $ I(\lambda) $ using primaries R, G, B and white point $ ({{r}_{w}}\ ,{{g}_{w}}\ ,{{b}_{w}}) $.

c) Calculate $ ({{r}_{\gamma }},\ {{g}_{\gamma }},\ {{b}_{\gamma }}) $ the gamma corrected tristimulus values for the spectral distribution $ I(\lambda) $ using primaries R, G, B and white point $ ({{r}_{w}},\ {{g}_{w}},\ {{b}_{w}}) $, and $ \gamma =2.2 $.


(Refer to ECE 637 Spring 2004 Final Exam Problem 4.)


Back to ECE QE page:

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva