(One intermediate revision by the same user not shown)
Line 5: Line 5:
 
=Information about the inverse (double-sided) z-transform=
 
=Information about the inverse (double-sided) z-transform=
 
<math>x[n]=\mathcal{Z}^{-1}(X(z))=\frac{1}{2\pi j}\oint_{c}X(z)z^{n-1}dz</math>
 
<math>x[n]=\mathcal{Z}^{-1}(X(z))=\frac{1}{2\pi j}\oint_{c}X(z)z^{n-1}dz</math>
 +
:for [[Info_z-transform| z-transform]] click  [[Info_z-transform|here]]
 
----
 
----
 
==Tutorials and other information about the z-transform==
 
==Tutorials and other information about the z-transform==
Line 23: Line 24:
 
*[[Practice_Question_inverse_z_transform_5_ECE438F13|Obtain the inverse z-transform]]
 
*[[Practice_Question_inverse_z_transform_5_ECE438F13|Obtain the inverse z-transform]]
 
*[[Practice_Question_inverse_z_transform_6_ECE438F13|Obtain the inverse z-transform]]
 
*[[Practice_Question_inverse_z_transform_6_ECE438F13|Obtain the inverse z-transform]]
 
+
*[[Practice_Question_inverse_z_transform_example_S15|Obtain the inverse z-transform]]
 
==Lectures covering inverse z-transform==
 
==Lectures covering inverse z-transform==
 
*[[2013_Fall_ECE_438_Boutin|ECE438 Fall 2013]]
 
*[[2013_Fall_ECE_438_Boutin|ECE438 Fall 2013]]

Latest revision as of 21:08, 19 April 2015


Information about the inverse (double-sided) z-transform

$ x[n]=\mathcal{Z}^{-1}(X(z))=\frac{1}{2\pi j}\oint_{c}X(z)z^{n-1}dz $

for z-transform click here

Tutorials and other information about the z-transform

Practice Problems about the inverse z-transform

Lectures covering inverse z-transform



Back to table of z-transform pairs and properties

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang