(New page: Category:z-transform Category:inverse z-transform Category:topic =Information about the inverse z-transform= ---- ==Tutorials and other information about the z-transform== *[[...)
 
 
(5 intermediate revisions by the same user not shown)
Line 3: Line 3:
 
[[Category:topic]]
 
[[Category:topic]]
  
=Information about the inverse z-transform=
+
=Information about the inverse (double-sided) z-transform=
 +
<math>x[n]=\mathcal{Z}^{-1}(X(z))=\frac{1}{2\pi j}\oint_{c}X(z)z^{n-1}dz</math>
 +
:for [[Info_z-transform| z-transform]] click  [[Info_z-transform|here]]
 
----
 
----
 
==Tutorials and other information about the z-transform==
 
==Tutorials and other information about the z-transform==
 +
*[[Z_Transform_table|Table of z-transform pairs and properties]]
 +
*[[InverseZtransform|Student summary of z-transform, including practice problems with solutions]]
 
*[[Inverse_Z_transform|Student summary based on Prof. Boutin's course notes]]
 
*[[Inverse_Z_transform|Student summary based on Prof. Boutin's course notes]]
 
*[[Relationship_between_DTFT_%26_Z-Transform_-_Howard_Ho|Relationship between DTFT and z-transform]]
 
*[[Relationship_between_DTFT_%26_Z-Transform_-_Howard_Ho|Relationship between DTFT and z-transform]]
Line 19: Line 23:
 
*[[Practice_Question_inverse_z_transform_4_ECE438F13|Obtain the inverse z-transform]]
 
*[[Practice_Question_inverse_z_transform_4_ECE438F13|Obtain the inverse z-transform]]
 
*[[Practice_Question_inverse_z_transform_5_ECE438F13|Obtain the inverse z-transform]]
 
*[[Practice_Question_inverse_z_transform_5_ECE438F13|Obtain the inverse z-transform]]
 
+
*[[Practice_Question_inverse_z_transform_6_ECE438F13|Obtain the inverse z-transform]]
 +
*[[Practice_Question_inverse_z_transform_example_S15|Obtain the inverse z-transform]]
 
==Lectures covering inverse z-transform==
 
==Lectures covering inverse z-transform==
 
*[[2013_Fall_ECE_438_Boutin|ECE438 Fall 2013]]
 
*[[2013_Fall_ECE_438_Boutin|ECE438 Fall 2013]]

Latest revision as of 21:08, 19 April 2015


Information about the inverse (double-sided) z-transform

$ x[n]=\mathcal{Z}^{-1}(X(z))=\frac{1}{2\pi j}\oint_{c}X(z)z^{n-1}dz $

for z-transform click here

Tutorials and other information about the z-transform

Practice Problems about the inverse z-transform

Lectures covering inverse z-transform



Back to table of z-transform pairs and properties

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn