(One intermediate revision by the same user not shown)
Line 4: Line 4:
 
=Information about the (doubled-sided) z-transform=
 
=Information about the (doubled-sided) z-transform=
 
<math>X(z)=\mathcal{Z}(x[n])=\sum_{n=-\infty}^{\infty}x[n]z^{-n}</math>
 
<math>X(z)=\mathcal{Z}(x[n])=\sum_{n=-\infty}^{\infty}x[n]z^{-n}</math>
 +
:for [[Info_inverse_z-transform|Inverse z-transform]] click  [[Info_inverse_z-transform|here]]
 
----
 
----
 
==Tutorials and other information about the z-transform==
 
==Tutorials and other information about the z-transform==
Line 12: Line 13:
 
==Practice Problems about the z-transform==
 
==Practice Problems about the z-transform==
 
*[[Practice_prove_modulation_property_z_transform|Prove the modulation property of the z-transform]]
 
*[[Practice_prove_modulation_property_z_transform|Prove the modulation property of the z-transform]]
*[[Practice prove z transform scaling property ECE438F11|Prove the scaling property of the z-transform]]
 
 
*[[Practice compute z transform windowed function|compute the z-transform of this function]]  
 
*[[Practice compute z transform windowed function|compute the z-transform of this function]]  
 
*[[Z-transforms_and_inverse_z-transforms_ECE438F10|Example of z-transform computations with corrections]]
 
*[[Z-transforms_and_inverse_z-transforms_ECE438F10|Example of z-transform computations with corrections]]

Latest revision as of 21:07, 19 April 2015


Information about the (doubled-sided) z-transform

$ X(z)=\mathcal{Z}(x[n])=\sum_{n=-\infty}^{\infty}x[n]z^{-n} $

for Inverse z-transform click here

Tutorials and other information about the z-transform

Practice Problems about the z-transform

Lectures covering z-transform



Back to table of z-transform pairs and properties

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang